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ABSTRACT

The present work is concerned with development of innovative damage mechanics models

for constitutive modeling of modem composite materials. Special attention is focused on

micromechanical damage theories to explain and model behavior of composites based on

micromechanics, instead of using phenomenological models with arbitrary thermodynamic

potential functions and arbitrary damage evolution equations. In particular, basic studies are

performed on the notion of isotropic and anisotropic damage variables in continuum damage

mechanics. It is demonstrated that "isotropic damage" does not necessarily imply "scalar dam-

age" representation in general. Furthermore, a micromechanical damage model is presented for

uniaxially reinforced composites with interfacial arc microcracks. All microcracks are assumed

to occur in the fiber/matrix interfaces, and are modeled as arc microcracks. Microcrack-induced

strains and overall compliances are analytically derived based on micromechanical bi-material

arc crack solutions. Both "stationary" and "process" damage models are given. It is emphasized

that the present work does not employ any arbitrary (fitted) "material constants". Finally, a novel

three-dimensional statistical micromechanical theory is proposed to investigate the nonlinear

0 behavior of microcrack-weakened brittle solids. The macroscopic stress-strain relations of elas-

tic solids with interacting microcracks are micromechanically derived by taking the ensemble

average (over all possible realizations) and volume average. The proposed statistical

micromechanical theory accounts for random microcrack location, distribution, and interaction

without using Monte Carlo simulations. The theory is fundamentally different from existing

effective medium theories and deterministic microcrack interaction method.
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RESEARCH OBJECTIVES

The proposed research work is concerned with development of innovative damage mechan-

ics theories and constitutive modeling of modern composite materials. Micromechanically

based damage theories and models will be actively pursued. Particular attention will be focused

on the construction of physical underlying damage mechanisms based on microstructural con-

siderations. The general goal is to physically understand and mathematically model the funda-

mental damage mechanisms at the local level so that we can simulate randomly oriented distri-

buted microcracks and perform failure analysis of composite solids and structures. The specific

objectives of the proposed research are the following:

1. Develop proper micromechanically based "damage mode tensors" for different modes of

failure mechanisms.

2. Develop a set of physical damage loading/unloading fracture criteria for microcracks initia-

tion, growth, coalescence and an'est.

3. Derive micromechanically-based evolution equations for microcrack growth.

4. Derive progressively damaged material properties (complainces) and obtain damaged

anisotropic multi-phase stress-strain constitutive laws based on micromechanics solutions.

5. Develop efficient and accurate computational constitutive algorithms for the

micromechanically-based damage models proposed, and perform experimental verification

of the models obtained.
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PART I:

On the Notion of Isotropic and Anisotropic Damage

Variables in Continuum Damage Mechanics

LO. Abstract

The present work analyzes the implication and limitation of some "scalar damage" models. In

particular, thermodynamic potential and "effective stress concept" are re-examined. It is demon-

strated that "isotropic damage" does not necessarily imply "scalar damage" representation in gen-

eral. The notion of isotropic and anisotropic damage variables in continuum damage mechanics is

then discussed. In addition, some results from micromechanical analyses are applied to show the

direct relationship between the fourth-order damage tensor and the damage-induced compliance

tensor characteristic of microcrack-weakened brittle matrix composite materials. It is shown that

even for isotropic damage one should employ an isotropic fourth-order damage tensor (not a scalar

damage variable) to characterize the state of damage in materials, in accordance with the effective

stress concept. In general, however, a damage tensor is anisotropic and should be derived from

micromechanical damage analysis when possible.



2.
I.1. Introduction

Since the first introduction of the scalar damage concept by Kachanov (1958) and Rabot-

nov (1963) for creep of metals, continuum damage mechanics has become an emerging field of

active research. Extensive phenomenological damage models were proposed in the literature to

describe and predict macroscopic constitutive behavior of ductile and brittle materials containing

distributed microdefects such as microvoids and microcracks. We refer to Lemaitre (1984), Kra-

jcinovic (1984,1986,1989), Kachanov (1986), and Ju (1989a) for a literature review. In addition,

micromechanical "non-process" (stationary) and "process" (propagating) damage models for brit-

tle solids with many microcracks were proposed by, e.g., Budiansky and O'Connel (1976), Horii

and Nemat-Nasser (1983,1985), Kachanov (1987), Krajcinovic and Fanella (1986), Sumarac and

Krajcinovic (1987,1989), Fanella and Krajcinovic (1988), Krajcinovic and Sumarac (1989), and Ju

(1989b).

The predictive utility of a damage model depends heavily on its particular choice of a "damage

variable" which serves as a macroscopic approximation in describing the underlying microme-

chanical processes of microdefects. In the current literature, there are many ways to phenomeno-

logically define or micromechanically derive damage variables; see, Krajcinovic (1989) for a state-

of-the-art review. In particular, scalar damage variables were widely used for isotropic or one-

dimensional phenomenological damage models; see, e.g., Lemaitre and Chaboche (1978,1985) for

excellent work. In addition, vectorial, second-order and fourth-order tensorial damage variables

were often used for anisotropic phenomenological damage models; see, e.g, Krajcinovic and Fon-

seka (1981), Vakulenko and Kachanov (1971), Kachanov (1980), Murakami and Ohno (1981),

Chaboche (1979), Cordebois and Sidoroff (1979,1982), and Ju (1989a) for interesting examples.

The simplicity of a scalar damage representation is indeed very attractive. However, a scalar dam-

age model is somewhat of limited use in practice. A vectorial damage representation is appealing

because microcrack areas and orientations are captured and a vectorial representation is a direct

extension of the original Kachanov's model. Nevertheless, a vector damage model to some ex-

tent suffers microcrack shape-indifference and tensor operation problems related to general stress

transformation. A second-order damage tensor representation is also attractive since microcrack

areas and orientations are captured, too. It is, however, incapable of describing general anisotropy.

Therefore, as noted by several researchers, an appropriate description of anisotropic damage gen-

erally involves a fourth-order or even an eighth-order damage tensor representation. In practice,
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an eighth-order damage representation is perhaps too complicated. A fourth-order damage repre-

sentation, on the other hand, can be handled reasonably well and and has nice correspondence with

the fourth-order overall stiffness tensor.

In spite of the direct intuition that "isotropic damage" necessarily warrants a scalar damage rep-

resentation (see, e.g., Lemaitre and Chabr',he (1978), Lemaitre (1984), Mazars (1984), Kachanov

(1986)), this is, surprisingly, not always true from the viewpoint of the effective stress concept and

thermodynamic potential. The present work shows that isotropic damage actually only implies that

the (fourth-order) damage tensor is isotropic, not necessarily reducing to a scalar. On the other

hand, anisotropic damage implies that damage tensor is anisotropic. Further, the implication of

scalar damage representation upon overall elastic-damage moduli is discussed within the frame-

work of the effective stress concept. Some results from micromechanical analyses are also applied

to demonstrate the physical meaning of the fourth-order damage tensor in the case of microcrack-

weakened brittle solids.
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1.2. Implication of scalar damage variable

In the case of spatially perfectly randomly distributed microcracks or microvoids in all direc-

tions, isotropic damage model is certainly an appropriate choice. In particular, in a scalar damage

model, the virgin (undamaged) material is often assumed to be linearly elastic and isotropic in the

absence of plastic flow. In the literature, some researchers consider the following rational elastic-

damage potential energy based on the physically appealing effective stress concept (Lemaitre and

Chaboche (1978), Lemaitre (1984), Mazars (1984), etc.):

= (1 - d) c' : C' (1)

where d is a scalar damage variable (ranging from 0 to 1), e is the elastic strain tensor, C' is

the virgin linear elasticity tensor, and" : "signifies tensor contraction. From the Clausius-Duhem

inequality for isothermal processes, one obtains the homogenized stress a,:

o=(1 - d) C':E (2)

Hence, it is clear that the overall elastic-da-mage stiffness tensor C takes the form:

C = (1 - d) C°  (3)

such that o- = C : el. As a consequence, a component of the overall elastic-damage stiffness

tensor can be obtained by scaling down the corresponding component of the virgin elastic stiffness
tensor by a common factor (1 - d). Moreover, the effective stress & is often defined as (within the

framework of isotropic damage):
0"

d -d 
(4)

Thus, we have a = C0 : El . The above formulation is indeed excellent for one-dimensional prob-

lems and is entirely consistent with Kachanov's (1958) original concept of damage measure.

In a three-dimensional setting, nevertheless, Eqs. (1)-(4) are less attractive. This can be proved

by simply noting from Eq. (3) that damaged bulk and shear moduli become K = (1 - d)Ko and

G = (1 - d)Go, respectively, with K and G denoting the virgin bulk and shear moduli. It follows

that GIK = Go/Ko . Therefore, the above scalar damage formulation inherently implies that

Poisson's ratio always remains constant, i.e., v = v,0 . This is somewhat too restrictive and not

universal even among isotropic damage processes. This anomaly is due to the one-dimensional

nature of Eq. (4).
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1.3. Notion of isotropic and anisotropic damage variables

As discussed in the previous section, "scalar damage" is only a special case of "isotropic dam-

age". "Isotropic damage" only states that the fourth-order damage tensor D is isotropic. In addition,

isotropic damage does not require the virgin elasticity tensor C° to be isotropic. It is emphasized

that isotropic damage will preserve the directional characteristics of the virgin elasticity tensor C0 .

That is, if C' is isotropic, then the elastic-damage stiffness C is also isotropic. On the other hand, if

C' is orthotropic (or anisotropic), then C is also orthotropic (or anisotropic). By contrast, general

anisotropic damage will change the directional properties of C° .

The anomaly in the aforementioned scalar damage formulation can be easily resolved by re-

examining the effective stress concept and the elastic-damage energy potential. In particular, the

following formulation is free of the previous anomaly in three-dimension:

0' = c' : [M(D).- C°] • e  (5)

0 where M(D) is a fourth-order tensorial function of the fourth-order damage tensor D. The Clausius-

Duhem inequality then renders

i" = [M(D) • C ] : Ee (6)

According to the effective stress concept, the effective stress can be expressed as a = C0 : c'

Consequently, Eq. (6) can be rephrased as

" =M(D) :a (7)

Clearly, M(D) is the transformation tensor relating the homogenized and effective stresses. More-
over, from Eq. (6), we obtain the elastic-damage stiffness tensor C:

C = M(D). C°  (8)

A rational choice of M(D) may be M(D) = I - D , with I denoting the rank-four unit tensor. If this

choice is made, then Eq. (7) and (8) can be recast as (see also Krajcinovic (1989))

o" [I - D] -1 : o, (9)

C = [I - D]. C' or D = I - C- C° -  (10)

It is worth noting that Eq. (10) shows the direct relationship between the damage tensor D and the

elastic-damage stiffness tensor C. Therefore, damage tensor D must be isotropic (not necessarily

reducing to a scalar representation) for an isotropic damage state. Moreover, the appropriate ex-

pression for the effective stress concept is Eq. (7) or (9), not Eq. (4) even in the case of isotropic

damage. On the other hand, D and hence C become anisotropic in the case of an anisotropic damage

state.
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1.4. Application of micromechanical analyses for isotropic damage

P In this section, we apply some results from micromechanical analyses for two-dimensional

microcrack-weakened brittle solids under tension (Horii and Nemat-Nasser (1983), Sumarac and

Krajcinovic (1987)). Applications can be made to brittle matrix fiber or particle composites as

well as ceramics, etc. It is assumed that the virgin material is isotropic and linearly elastic, and

that line microcracks are always open and perfectly randomly distributed in all directions with

uniform size 2a. The microcrack size 2a, however, may grow uniformly during the loading history.

Therefore, the overall material response remains isotropic. Furthermore, the overall elastic-damage

compliance tensor S takes the form:

S = So + S* (11)

where So is the virgin elastic compliance (i.e., inverse of CO) and S* denotes the damage-induced

additional inelastic compliance.

For two-dimensional problems, it is more convenient to use the Voigt's notation and express the
compliance tensor as a three by three matrix. Based on microcrack opening displacement formulas,

S* can be micromechanically computed by (assuming plane stress condition):
* 2 N a2  

(o!

S" = Na J' §(0) dO (12)

where N = the number of microcracks per unit cell surface, A = the surface area of representative

unit cell, F = the damaged overall "Young's modulus", and §(0) is a tensorial function of the
orientation angle 0 ; see Sumarac and Krajcinovic (1989, Eq. (17)). Notice that S* is indeed an

isotropic tensor.

In the case of the Taylor's model, microcrack interaction is completely ignored. By actually

evaluating the integral in Eq. (12), we obtain the overall elastic-damage moduli for plane stress as

follows (see Sumarac and Krajcinovic (1989, Eq. (22)))

E = 1 (13)
Eo v0  1+w

where w - Nra2/A is the non-dimensional microcrack density parameter, and Eo and vo are the

virgin elastic moduli. Clearly, v < vo and therefore the scalar damage representation discussed

in Sec. 2 is inadequate. It is also noteworthy from Eq. (12) that S" is factually a function of

the microcrack density parameter w. Nevertheless, one should not confuse the scalar microcrack

density parameter w with the isotropic damage tensor D.



On the Notion of Isotropic and Anisotropic Damage Variables 7

Similarly, in the case of the self-consistent model, S* can be micromechanically derived and

the plane stress elastic-damage moduli are (Horii and Nemat-Nasser (1983)):

E v=- = 1 - W (14)
Eo Po

One observes that v < v, , and hence the previous scalar damage formulation is again improper.

Moreover, one may define an alternative damage tensor b through

I + f) =_ [I - D] - ' (15)

so that one may write

S = S° .11 + b] (16)

From Eq. (11) and (16), we make the following identification:

S* = So I) or ) = C° • S' (17)

Thus, it is actually possible derive the fourth-order damage tensor f) (or D) from micromechan-

ics (i.e., the microcrack-induced inelastic compliance S*). Obviously, if microcracks are spatially

randomly distributed in a representative volume element, then S* and hence f) (or D) are isotropic

(given linearly elastic and isotropic C'). If there are preferred orientations in microcrack distribu-

tion, then S" will be anisotropic and therefore damage tensor b (or D) becomes anisotropic. Finally,

one notes that if S* = d SO then D = d I, and hence the scalar damage model discussed in Sec. 2 is

recovered.
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1.5. Conclusion

The present work analyzes the implication and limitation of some scalar damage models. It

is demonstrated that isotropic damage does not necessarily imply scalar damage representation in

general. The notion of isotropic and anisotropic damage variables in continuum damage mechan-

ics is discussed. In addition, some results from micromechanical analyses are applied to show the

direct relationship between the fourth-order damage tensor D (or b) and the damage-induced com-
pliance tensor S . It is concluded that, even for isotropic damage, one should employ an isotropic

fourth-order damage tensor (not a scalar damage variable) to characterize the state of damage in
materials. In general, however, a damage tensor is anisotropic. Finally, it is preferable to derive gen-

eral anisotropic damage tensors from micromechanical formulations, instead of postulating them

arbitrarily.
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1.2.

PART II:

A Micromechanical Damage Model for Uniaxially Reinforced

Composites with Interfacial Arc Microcracks

11.0. Abstract

A micromechanical damage model is presented in this work for fiber/matrix interfacial micro-

crack-weakened uniaxially reinforced brittle matrix composites. It is assumed that the undamaged

fibers and matrix materials are linearly elastic and isotropic. All microcracks are assumed to occur

in the fiber/matrix interfaces, and are modeled as arc microcracks under "cleavage I" deforma-

tion processes. Microcrack-induced inelastic strains and overall elastic-damage compliances are

analytically derived based on micromechanical bi-material (interfacial) arc-microcrack opening

displacements and probabilistic distributions of arc microcracks. In addition, thermodynamic ba-

sis is rendered. The present work is entirely different from existing phenomenological continuum

damage models for composite materials since it is based on micromechanical derivations. Both
"stationary" and "process" damage models are given in the present work. In particular, microcrack

kinetic equations are constructed based on micromechanical fracture criterion and microstructural

geometry in a representative volume element. Simple and efficient computational algorithms as

well as some numerical uniaxial tension tests are also presented to illustrate the proposed microme-

chanical damage model for composites. It is emphasized that the present work does not employ

any arbitrary (fitted) "material constants".



II.1. Introduction

Initiated by Kachanov (1958) and Rabotnov (1963) for one-dimensional creep damage of met-

als, continuum damage mechanics has been extensively explored and applied by many outstanding

applied mechanics researchers. Basically, there are two types of continuum damage formulations -
phenomenological and micromechanical damage models. Most existing work are classified as phe-

nomenological damage models; see, e.g., Krajcinovic (1984,1986,1989) and Bazant (1986) for a

comprehensive literature review. There are, however, some micromechanical "stationary" or "pro-

cess" damage models proposed in the literature; see, e.g., Budiansky and O'Connel (1976), Horii

and Nemat-Nasser (1983, 1985), Kachanov (1987), Krajcinovic and Fanella (1986), Fanella and

Krajcinovic (1988), Sumarac and Krajcinovic (1987), and Ju (1989b).

In particular, excellent studies on damage mechanics in modem composite materials were pre-

sented by Weitsman (1987a,1987b,1988), Tareja (1985a,1985b,1985c,1986,1987), Allen et al.

(1987a,1987b,1987c), and Harris et al. (1987) for distributed matrix cracks and delamination

within the framework of phenomenological damage models. On the other hand, some noteworthy

micromechanical (primarily "stationary") damage models for composites were proposed by, e.g.,

Wang et al. (1984), Laws et al. (1983) and Hashin (1985) for transverse (parallel) matrix crack

systems. It is noted that existing phenomenological continuum damage models of Weitsman, Tal-

reja and Allen et al. employed either vector-valued or second-rank (symmetric or non-symmetric)

"damage tensors" (treated as internal state variables) to characterize the state of damage in compos-

ite materials. However, a vector or a second-rank damage tensor is inherently incapable of describ-

ing general anisotropy in composites. An appropriate description of anisotropic damage generally

involves afourth-rank (or even eighth-rank) damage tensor representation; see, Chaboche (1979),

Cordebois and Sidoroff (1979,1982), Ju (1989a), and Krajcinovic (1989) for further remarks. In

addition, in spite of the solid and attractive thermodynamic basis, the specific functional forms of

the Helmholtz or Gibbs free energy potentials in phenomenological damage models are to some

extent arbitrary (heuristic). Therefore, the resulting overall stiffness-damage relationships and

stress-strain laws are also somewhat arbitrary. Moreover, in order to have constitutive predictive

capability, phenomenological damage models must arbitrarily or empirically postulate functional

forms for damage "evolution (growth) equations". In the thermodynamic free energy potentials

and damage evolution equations, nevertheless, existing phenomenological damage models typi-

cally rely on the use of many (perhaps up to 100 or even 200) fitted "material constants". As a



A Micromechanical Damage Model for Composites 14

consequence, it becomes very difficult to identify these fitted constants from actual experimental

data of composites.

Hence, as pointed out by Krajcinovic and Fanella (1986) and Weitsman (1988), micromechan-

ical damage theories for composites are warranted to incorporate microstructural geometry, mi-

cromechanical deformations and microcrack growth into the damage mechanics framework. Most

currently available micromechanical damage models for composites focused on the effects of trans-

verse stationary matrix cracks on overall (damaged) compliance tensors. The present paper, on the

other hand, considers the damage effects on uniaxially reinforced composites due to the existence

and growth of an ensemble of randomly oriented microcracks at the fiber/matrix interfaces within

the context of micromechanical damage mechanics. This circumstance corresponds to an ensem-

ble of randomly distributed arc microcracks at the interfaces between cyclindrical inclusions and

extended exterior regions under plane strain. In the case of a single arc crack at the fiber/matrix

interface subjected to remote tension field (plane strain), solutions are available in England (1966),

Perlman and Sih (1967), Toya (1974), and Piva (1982). In particular, Toya's solution is the most

suitable for our damage mechanics formulation because it provides analytical (micromechanical)

expressions for microcrack opening displacements and arc microcrack fracture energy criteria; see

also remarks made in Weitsman (1988).

In the present work, it is assumed that the undamaged fibers and matrix materials have different

properties but are both linearly elastic and isotropic. All arc microcracks are assumed to occur in

the fiber/matrix interfaces under "cleavage 1" deformation processes (i.e., due to pre-existing arc

microcracks). New microcrack nucleations ("cleavage 2" processes) are not considered in this

work. Moreover, at this stage of the development, arc-microcrack interactions are assumed to be

negligible (Taylor's model); i.e., dilute microcrack concentrations are considered. In the absence of

a micromechanical solution for partially closed or entirely closed arc microcrack (namely, a "mixed

crack-and-contact problem"), we assume that all arc microcracks are entirely open under a remote

tension field.

An outline of this paper is as follows. The representation of the fourth-rank damage and ther-

modynamic basis for microcrack-weakened brittle composites are presented in Sec. 11.2 within

the context of homogenization for multiphase inhomogeneous materials. It is assumed that dis-

tributed arc microcrack concentration justifies the use of effective continuum medium theory. Based

on Toya's (1974) micromechanical solution of bi-material (interface) arc-crack opening displace-

ments, damage-induced inelastic strains and inelastic compliances are systematically derived in
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Sec. 11.3 for an ensemble of randomly oriented open arc microcracks. This corresponds to a sta-

tionary (non-process) micromechanical damage model. In Sec. 1.4, microcrack growth (evolution)

is considered based on Toya's (1974) micromechanical fracture criterion for a single arc microc-

rack under uniaxial tension. The extension to account for biaxial tension loadings can be readily

made. "Stable" and "unstable" domains are identified for stationary and propagating arc micro-

cracks, respectively. As a consequence, a "process model" is rendered. It is emphasized that the

present work does not employ any arbitrary (fitted) "material constants". Simple and efficient com-

putational algorithms are given in Sec. 11.5. In addition, some numerical uniaxial tension tests are

presented in Sec. 11.5 to illustrate the potential capability of the proposed micromechanical damage

model for composites.
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11.2. Thermodynamic basis

In the case of general anisotropy, a scalar, a vectorial, or a second-rank tensorial representation

of damage variable is not adequate; see Krajcinovic (1989) for more details. In this work, we

employ a fourth-rank anisotropic damage tensor to represent the state of damage in anisotropic

composite materials. It is worth mentioning that the fourth-rank damage tensor employed has an

appealing correspondence with the fourth-rank overall stiffness (or compliance) tensor.

Within the framework of homogenization concept for inhomogeneous effective continuum

medium, one may define the homogenized Gibbs free energy as

x 2: [S' . (I + D)] : or (1)

where a, is the volume-average stress tensor (Hill (1965)), S' is the undamaged linear elastic com-

pliance (obtained by the rule of mixture) of a composite material, I is the fourth-rank unit tensor, D

denotes the fourth-rank damage tensor, and" : " denotes the tensor contraction operation. By the

Clausius-Duhem inequality for isothermal process, we have (with c denoting the volume-average

strain)

-:E> 0 (2)

The standard Coleman's method then leads to the following macroscopic stress-strain law and over-

all elastic-damage compliance tensor S :

E = [S'. (I + D)] : " (3)

S =_ S . (I+ D) (4)

together with the damage dissipative inequality:

0. > (5)

From Eq. (5), it is observed that the evolution 9 plays an essential role in microcrack energy

dissipation and growth. Further, Eq. (3) is entirely consistent with the "effective stress" concept

in continuum damage mechanics (Kachanov (1958), Rabotnov (1963), Lemaitre and Chaboche

(1978)). During a damage loading process, the total strain tensor c is amenable to an additive

decomposition:

E=E +- (6)
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where e and e* denote the elastic and inelastic (damage-induced) strains, respectively. In addition,

it is assumed that e" z 0 upon complete unloading; namely, the residual strain at zero stress is

negligible for brittle composite materials. The elastic-damage compliance tensor is also suitable

for an additive decomposition:

S = So + So (7)

where S" signifies the damage-induced inelastic compliance (Mura (1982), Horii and Nemat-Nasser

(1983)). In fact, from Eqs. (4) and (7), the relationship between S" and D can be formally expressed

as

S" = So. D (8)

Therefore, if one can micromechanically derive the damage-induced inelastic compliance S*,

then one can explicitly express the fourth-rank damage tensor D by means of micromechanics

in stead of postulating D and 0 heuristically. This is precisely the motivation of the following

development.
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11.3. Microcrack-induced inelastic strains and overall compliances

In this section, damage-induced inelastic strains and inelastic compliances are derived for an

ensemble of randomly distributed fiber/matrix interfacial arc microcracks. Microcrack interactions
are neglected at this stage of our development, and shall be subject of future study. According, only

"Taylor's model" (not self-consistent model) is constructed. The microcrack opening displacement

formulas for a single interfacial arc microcrack are based on Toya's (1974) solution. All interfacial

microcracks are assumed to be entirely open. If micromechanical solutions for partially closed

or entirely closed interfacial arc microcrack become available in the future, however, the present

framework can be readily modified to accommodate those circumstances. The development in this
section can be classified as "stationary" (or "non-process") model according to the terminology of

Krajcinovic and Fanella (1986).

II.3.1. Microcrack-induced inelastic strains

In Toya's (1974) solution, the fiber (inclusion) and the matrix materials are assumed to have

different linear elastic properties. Nevertheless, both fiber and matrix constituents are assumed to

be homogeneous and isotropic. Toya (1974) actually provides solutions for stresses, displacements,

and debonding criteria for an open arc crack at the bi-material interface under remote uniaxial and

biaxial tension loadings. In what follows, for simplicity, we only consider the case of uniaxial

tension loadings.

As remarked by Toya (1974), both stresses and displacements oscillate violently at the imme-

diate regions near the crack tips. This is quite typical for the mixed boundary-value problem for

interfacial cracks at bi-material boundaries. However, the extent of the oscillating regions is very

small. Consequently, Toya (1974) concludes that his solutions provide a good approximation to

the physical state of the body at the bi-material interface except in the immediate vicinity of the

crack tips. Although some recent results of oscillation-free bi-material stress and displacement

analyses were reported in several technical symposiums and journals (see, e.g., Qu and Bassani

(1989a, 1989b), Bassani and Qu (1989)), they were derived for line (straight) microcracks at the

interface of two dissimilar semi-infinite materials, not valid in our arc crack problem. Therefore,

Toya's solution is adopted in the present work.

The global (unprimed) and local (primed) Cartesian coordinate systems as well as the local

polar coordinate system (at a typical arc point) are shown in Figure 1. In particular, c denotes the
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half-angle expanded by an arc microcrack, a denotes the radius of the fiber (inclusion), 4 denotes

the angle between the x'-axis and y-axis, and 0, (= 7r/2 - 0) signifies the angle between the y-axis

and y'-axis. The uniaxial tension p is applied in the y-axis direction. Counterclockwise direction

is taken as positive, and 0 is measured from the x'-axis. In addition, n' and (u', , u'e) represent the

outward unit normal vector and the polar coordinates at a typical point along the arc, respectively.

The expressions for u', and u'a under remote uniaxial tension are given by Eq. (3.57) in Toya

(1974) by means of a complex variable form. Note that the real part is u', and the imaginary part

is u'9 . Let us first transform the local polar coordinates at a typical arc point to the local Cartesian

coordinate defined at the mid-point of the arc:

u1, = u', cos 0 - u'a sin 0 (9a)

ul = u', sin 0 + u'9 cos 0 (9b)

Furthermore, the Cartesian components of the unit outward normal vector at a typical arc point are:

n' = cos6 ; n', = cos 0 (10)

Since the present work is concerned with the mechanical behavior of inteffacial microcrack-

weakened uniaxially reinforced brittle composites, it is appropriate to focus on the c.tse of plane

strain (orthogonal to the fiber direction). The virgin brittle composite material under consider-

ation is actually transversely isotropic. Thus, in a plane strain framework, the virgin composite

material is isotropic. However, if the composite contains an ensemble of microcracks, it may be-

come anisotropic, depending on the microcrack sizes and orientations. By the standard definition

of Cartesian strain tensor, the inelastic plane strain components (in Voigt's notation) due to a single

(k-th) arc microcrack take the form:
.(k)' -(k)' a - ' 0da = . ( o - u'9 sin 0 cos O) dO (11)

-X A xcos A d= J o Urco20(1

•(~ fy(k)l _ a /
C2k)' - A .j_ u'y sin 0 dO = -- /(u', sin20 + u'e sin 0 cos 0) dO (12)

-,,¢a a
e  y - (k) - - (u' sin0 + u'rcos) a - - sin 20 - u'O cos 20) dO (13)

where A is the surface area of a representative volume element in two-dimension.

In the above equations, it is implicitly assumed that the k-th arc microcrack is entirely open.

That is, the radial crack opening displacement u' is always positive. Therefore, there exist some
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restrictions on the arc microcrack size 2a and the orientation 0; see Toya (1974) for further remarks.

For example, in the case of the epoxy matrix (shear modulus pI = 346 KSI or 2.39 GN/m 2, Poisson's

ratio in = 0.35) and glass fiber (shear modulus P2 =6410 KSI or 44.2 GN/m 2, Poisson's ratio

q, = 0.22) composite material, the range of "entirely open" arc microcracks is approximately

defined by:

1 +a < 650 (14)

See Fig. 2 in Toya (1974) for more information regarding allowable (4, a) region.

The inelastic strains due to an ensemble of non-interacting arc microcracks can be evaluated

by performing the following integration:

c* = Njgj)e; P(O, a) dQl (15)

where N is the number of open (active) arc microcracks; i, j = 1, 2, 6; P(O, a) is a joint probability
density function of arc microcrack orientations and sizes; 12 is the domain of all open (active)

microcracks, and g(k) is the component of the following local-global transformation matrix (Horii

and Nemat-Nasser (1983))

cos 2 a sin2  sin 21
[gk)] = sin2  in 2c- , (16)

- sin 2;b sin 20 cos 2J

Eq. (15) can be numerically computed by double Gauss quadrature, as will be discussed in Sec.

11.5.

The total strain components can be obtained by adding f to the elastic contributions f , with

f expressed as
C!= so(17)

Remark 3.1. In the case of biaxial tension loadings, c* can be obtained by the same procedure

as above. The only modification required is to use Eq. (3.43) (not Eq. (3.57)) in Toya (1974) when

integrating arc crack opening displacements. I

11.3.2. Overall elastic-damage compliances

To derive the damage-induced inelastic compliance matrix S , Eqs. (1 1)-(13) must be mod-

ified. The key step is to construct the inelastic strain-stress relationship (c*(k)' vs. o') in local
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Cartesian coordinates. However, this local relationship is not readily available from (3.57) in Toya

(1974) since crack opening displacements are related to global tension stress p instead of local

stress field in Toya's work. The local stresses can be easily obtained as follows

'-T= p cos 2 4 (18)
I 2

2  = p sin2  (19)

or6 a ' = sin 20 (20)

After a lengthy but straightforward derivation, Eqs. (11)-(13) (due to a single arc microcrack

only) can be recast as

= [ u'i cos20 - u'I sin0cos0) dO] 'ori  (21)

,;(k)' =a (u',i sin 2 0 + u'e, sin 0 cos 0) dO o-1 (22)

= A (ui sin 20 - u'ai cos 20) dO a (23)

where the summation is for i = 1, 2, 6, and the expressions for u',i and u'gi are
I

., -Ala [sin (a - 0) sin (a +0)]e ' - ) x

I - (cos a + 2A sin a)e 2A(,r - a) + (I - k)(1 + 4A2) sin2 a 1
X2 - k - k(cos a + 2A sin Ct)e 2 , ( r - a) - k -

_2(l - k) 2A~a-1r) cos]csi~ n 1 ] (24)
-_2 [sin !(a +0)

+ [2(l - k) (r-sin sinin ( 0-Aln asi n +( - 0)

u/61 = -Ala [sin !(a - 0) sin/(e + 0)] X -

x [ -(cos a + 2A sin a)e2 (,-*) + (1 - k)(1 + 4A 2) sin 2 a 1
X2 - k - k(cos a + 2A sin a)e 2A(w- )  k

2(1 -k) 2A(-,) o1 sin [sAln 'a + (25)
k e2 cos]sin -a + [sin (+0)])

[2(1- k) -sin!(a - _0)
+ [2(1 - k)~2 Ya(-) sin 0 cos (10 - A ln [i /~+))
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I

U' 2 = -Ala [sin '(ak - 0) sin '(a + 0)]1 eA("-*) x

×n -(cosa + 2A sin a)e2 (w-a) _ (1 - k)(l + 4A2) sin2a 12 - k - k(cos a + 2A sin a ,e2A(,r-- ) -k +

"2(1- k) 2A ,o])  (io s sin !(a - 0) (26)

{ [ 1- (cos +2sin e 2 -_( - k)( +4A2 )sin2  1
k 2-k-k(cos +2A sin a)e2 1( C) j

2(1 - k)12 (0 ., k] . .sin (a- 0)] (27)
+ cos0 sin - Aln sin

* - °[ -k2 r sii n +

a2 = -2A, a [sin (a -0) sin (7+0)] X ×

2 [si (Co + 0))

x×{2(l1 _k)e2ck-'7Isin8Os ( 0- Anm '+9 )-

[ (- k)( + 4A2)sin 2 0a 2(I - k) (. 0] a28)
-k[21 + (cos a + 2A sin O)e 2A(Ir -a)] kk cos x

2(l~ ~ ~[i - (oi (r ~ (7
+e")cssin 10 - A In 1. 2.n

k= -2Aa [sin0( - 0)sin (sn + 0) J

x {2(1- k)2 (-)sin Oi (0 - An [ i-(a . . -)

_ [ (1- k)(1 +4A 2) sin2 a 2(I - k)z,,o 01n (29)

S[k I + (cos +2A sin )e2A( -a) ]  - k ][sin( !O)( -

k~ 2 ° sin 1(cn +( +0))

In the above equations, kc, A, and A1 are given material properties (related to elastic shear moduli

and Poisson's ratios of fiber and matrix), and are defined in (3.9), (3.3), (3.39) in Toya (1974). For
convenience, they are given in what follows:

s-- , 2 (1+2) I- _+__)3

21+v (Isl+ cW2) (p1 + 2)

DC----3 -4 rT ; K2=-3- 4 12 (31)

S2
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In,'A.... 
(32)

27r
A+ -- + I+ + 2 (33)

P2]J

Therefore, Eqs. (21)-(23) can be rewritten as (i, j = 1, 2, 6)

COI= 5 .-(k)' a'l (34)

where Sj(k)' is the local two-dimensional microcrack-induced inelastic compliance component. In
particular, the inelastic compliance matrix components take the form:

S*(k)f a /
= (u',i cos2 0 - u'i sin 0 cos 0) dO (35)

$iky' a (u',i sin 2 0 + u'aj sin 0 cos 0) dO (36)

I A (u',i sin 20 - u'9i cos 20) dO (37)

It is noticed that the inelastic compliance matrix S"(k)' due to a single arc microcrack is in fact

non-symmetric; i.e., S*(k)' :t S-(k)' for i V j. The integrals in Eqs. (35)-(37) can be effectively
evaluated by means of numerical integration procedures; see Sec. 11.5 for details. In addition, in

terms of global Cartesian coordinates, S,' ' can be rephrased as

SC/k) = (k) g(k) Sk)'(=3. 9..i 9. -S= (38)

Consequently, the total inelastic compliance S" due to an ensemble of randomly oriented interfacial

arc microcracks can be expressed as

S=N jSk) P(Oa)dW (39)

From Eqs. (35)-(37), it is observed that S" is actually a tensorial function of the mean "arc mi-
crocrack density parameter" < w > , with w _ N(aa )/A . Finally, the overall elastic-damage

compliance S is obtained simply by writing

S = So + S" (40)

Therefore, the inelastic compliances and fourth-rank damage tensors of interfacial microcrack-

weakened brittle composites can actually be derived from micromechanics, instead of postulating

them arbitrarily or heuristically.
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11.4. Microcrack kinetic equations

It is characteristic that brittle composite solids have some pre-existing arc microcracks along

the fiber/matrix interfaces even before specimens are first loaded. Some of these initial microcracks
may grow (propagate) later upon application of adequate loads. In this section, we transform the

stationary ("non-process") damage model presented in Sec. 11.3 into a "process" damage model so

that the model possesses a constitutive predictive capability. That is, "cleavage 1" (pre-existing)
microcrack growth and the evolution of S (or S') are considered based on micromechanical con-

siderations. The importance of micromechanically-based microcrack growth relations were also

recognized by Weitsman (1988). It is recalled that although some existing phenomenological dam-
age models are in principle capable of providing damage evolution equations for composites, they
may require some 100 (or even more) fitted "material constants" in the microcrack evolution laws.

The present work is not restricted to monotonically increasing loads. In fact, loading/unloading
sequences can be easily accommodated by computing and checking whether there is undergoing

microcrack growth (excluding those previously propagating and currently arrested microcracks).

If there is no (0, a) region in which additional microcrack growth is now taking place, then the

current incremental load step is in an unloading state. Therefore, "active microcrack growth" is
the valid currcnt loading condition, regardless of prior existence of certain (0, a) regions where

microcracks previously experienced growth. Moreover, the damage-induced inelastic compliance

S" takes the form:

S" = S. + S* + S (41)

where S = the compliance contribution from undergoing microcrack growth, S* = the contribution

from stationary microcracks having initial sizes, and S = the contribution from arrested microcrack

growth due to previous microcrack growth. In particular, if S* = 0, then the current load level p
is not high enough to cause further damage, and therefore all existing microcracks are arrested.

Finally, S" is added to SO to obtain the overall compliance S.

11.4.1. Interfacial microcrack fracture criterion

The mixed mode bi-material fracture criterion was provided in Eq. (4.8) in Toya (1974) for a

non-interacting, entirely open arc microcrack along the fiber/matrix interface under uniaxial ten-
sion. It is implicitly assumed that the bonding strength between the fiber and matrix is sufficiently
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small compared with the fracture toughness of the matrix, so that an initial (existing) arc micro-

crack will always grow along the bi-material interface. Thus, microcrack kinking into the matrix is

not considered here. Toya's bi-material, local stress fracture criterion for a tip of an arc microcrack

under uniaxial tension reads:

lp2kaAl(1 + 4A2)7rNo~o sin a = 2y'f (42)

where i'f is the specific surface tension energy of the interface (i.e., critical energy release rate), and

No together with its complex conjugate N'O are functions of qS, a, and elastic material properties (see

Eq. (4.9) in Toya (1974)). Eq. (42) is only valid for an open microcrack; i.e., u', > 0 is required

for any 0 value along an arc microcrack. In addition, one tip of a microcrack may reach the fracture

criterion (4.2) before the other tip does. Hence, one tip may be propagating while the other tip is

arrested.

When the energy release rate reaches its critical value (or when tension reaches a critical value

p,), an arc microcrack may grow in a stable or unstable fashion, according to Fig. 3 in Toya

(1974). Within a limited range of the (4, a) region, Eq. (42) may have two solutions for a and

4. Thus, one tip or both tips may actually grow in a stable manner. This implies that the final

microcrack size a1 and orientation Of can be analytically obtained. However, for other ranges of

the (4, a) region, there is only rne solution for Eq. (42). Therefore, an arc microcrack may grow

in an unstable manner outside the limited range of the two-solution (0, a) domain. Moreover, with

further increase of the tensile stress p (> p,), even an originally stable arc microcrack will grow

continuously in an unstable manner.

In the case of many randomly distributed open arc microcracks, Eq. (42) is systematically

checked for every permissible microcrack orientation 0 and size a to numerically determine the

domains of "growth zone" and "stationary zone" for a given tensile stress p and known elastic

material properties. Because of the preferred microcrack growth orientations, the overall material

compliances become even more anisotropic. These issues will be further addressed in Sec. 1.5.

It is worth noting that the interfacial fracture criterion for a tip of an arc microcrack under

biaxial tension field is also available from Eq. (4.7) in Toya (1974). Therefore, the regions of

microcrack "growth zone" can be numerically identified, too.
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11.4.2. Microcrack growth - a process model

As previously mentioned, it is presumed that all arc microcracks are entirely open and no mi-

crocrack kinking (into matrix) is considered. These assumptions are made because solutions for

mixed boundary-value problems are not yet available for partially closed, entirely closed (mode

II frictional sliding), or kinked arc microcracks. When these solutions do become available, the

proposed process model must be properly modified.

In addition, it is recalled that the region of "stable microcrack growth" (from an initial microc-

rack orientation and size (0j, a) to a final stable configuration (of, of) is quite limited and is only

applicable at certain critical stress level, according to Fig. 3 in Toya (1974). Therefore, it appears

rational and practical to simplify the distributed microcrack growth kinetics as follows. If one tip

of an arc microcrack reaches or exceeds the critical surface energy required to initiate microcrack

growth, then both tips of the arc microcrack may grow continuously (generally in a non-symmetric

fashion) until the half-angle size reaches an af and the central crack "orientation" Of -_ 0' (i.e.,

approximately aligned with the applied tensile loading direction). In the case of the aforemen-

tioned epoxy-glass composites, af = 650 is a reasonable choice since it is the maximum allowable

half-angle size for an arc microcrack to remain open. It is noted that the arc-microcrack central

orientation indeed will change due to crack growth; see Toya (1974) for more discussions. There-

fore, according to the proposed simplified treatment, an arc microcrack may either be stable (no

growth, with original geometry) or unstable (with af = 650 and Of = 00). Clearly, damage-induced

anisotropy is bound to be a natural consequence.

In the case of randomly distributed arc microcracks, Eq. (4.2) should be used to numerically

(iteratively) define the bounds of (4, a) regions undergoing microcrack growth under a particu-

lar tensile stress p, a given interface toughness -fif and a given initial microcrack geometry. For

simplicity, in what follows, we assume that all arc microcracks are of equal initial size ai and are

such oriented that 101 + ai < 650 (opening) always holds. Thus, for a specified interface toughness

74, one can perform numerical iteration to obtain the minimum tension stress p, required to cause

the first arc microcracks to propagate. The corresponding initial central microcrack orientations

are denoted by ±O, . When p is greater than p., ,the unstable microcrack domains will increase

accordingly.

The proposed microcrack growth kinetic sequence proceeds as follows.
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(1) As p < p, , all arc microcracks are stable and of initial size a,. Due to preferred initial

microcrack orientations to ensure opening, the overall stress-strain response is anisotropic even

if virgin composites are isotropic (in plane strain). Although the overall response is linear and

reversible under the present stress level p , the material state is really elastic-damage (inelastic).

In fact, the current elastic-damage compliance S is greater than the virgin undamaged elastic

compliance SO.

(2) As p = p,, , those microcracks with central orientations 0, become unstable, and increase their

lengths to a! = 650 as well as change their orientations to of = 0. The contributions from

partially closed and entirely closed portions are neglected here.

(3) As p - pi > p, , the unstable microcrack growth regions R28 t increase. Therefore, some

microcracks in specific orientation domains (-01, -0bh) and (Oh , 01) become activated and

increase in size to af = 650 as well as change their orientations to o!f = 0. The material

behaves anisotropically and the elastic-damage compliance increases. It is noted that 01 and

Oh values depend on p, , p, ai and -yf, and can be obtained by numerical iteration. The

compliance contributioi is S* and S* in Eq. (41) can be computed (integrated) through Eq. (35)

and (39):

S= N 1 g(k)Ts*(k)'(0, acf)g (l ) P(SC)d.. (43)

S= N j g(k)TS.(k)'(0, a)g(k) P(O)do (44)

where P(0) is the assumed probability density function of microcrack orientation and li,, is

the stable (no growth) domain.

(4) As p, < p < p, ,the unloading case is taking place. There is no further microcrack growth

because the apparent "active orientation fans" shrink. Therefore, S: = 0. It is emphasized

that the actual "orientation fans" (featuring a! size) does not reduce owing to the irreversible

nature of damage. Hence, the elastic-damage compliance remains its previous value.

(5) As p > p1, more microcracks are activated. The "unstable growth" domains can be computed

similar to step (3). However, S, in step (3) should be replace by the sum of S, and S in this

step.

(6) At some higher stress level p = pc, the energy release rate reaches the critical value of the

matrix energy barrier. Therefore, microcracks having size af will resume to propagate (kink)

into the matrix, and eventually lead to final failure.
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As was commented by Sumarac and Krajcinovic (1987), the above scheme implicitly assumes

that ultimate failure prefers "runaway cracks" in comparison with "localization modes". Some

numerical simulations will be given in Sec. 11.5.
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11.5. Computational algorithms and numerical simulations

In this section, computational integration algorithms are given for the proposed micromechani-

cal damage model. Furthermore, a number of uniaxial tension numerical simulations are presented.

In the absence of suitable plane strain experimental data at this stage, however, actual experimental

validation is not included here. Experimental verification of the proposed models should be per-

formed in the future once they become available. Nonetheless, the presented numerical simulations

demonstrate the potential capability of the proposed damage model, without resorting to any fitted
"material parameters" commonly utilized in phenomenological continuum damage models.

11.5.1. Computational integration algorithms

The proposed micromechanical damage model does not include microcrack interaction effects,

and therefore falls into the category of "Taylor's model". That is, one employs the undamaged

elastic material properties (not overall elastic-damage moduli) to compute microcrack opening dis-

placements. Thus, the proposed process model does not require the use of an iterative scheme when

computing the single microcrack-induced inelastic compliance S"(k) (see Eqs. (35)-(38)). In order

to determine the bounds of unstable crack growth regions under a particular applied tension stress,

nevertheless, one needs to perform numerical iterations, as commented in Sec. II.4.2. The com-

putational schemes involved in solving the proposed stress-controlled micromechanical damage

models proceed as follows. It is assumed that all initial arc microcracks are of equal size a, and

open.

(1) For a given load level p , compute "unstable orientation bounds" (-01, -0-h) and ( h, 04')

according to the fracture criterion Eq. (42). For example, one may use the bi-section method

to locate the very first unstable microcrack orientations ±0, , and later the bounds defining

the crack growth domains. These "unstable orientation bounds" should be stored as history

variables since they are irreversible.

(2) Obtain the individual and total damage-induced inelastic compliance S*k) and S" by actually

evaluating the double integral involved in Eq. (39) (in conjunction with Eqs. (35)-(38)). Note

that stable microcracks have the size a, while unstable microcracks reach the size of (= 650

in our case). Numerical integration of Eq. (39) can be efficiently performed by two separate

"Gauss quadratures" - one for stable and the other for unstable regions. In particular, one needs
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to integrate the compliance contributions from every 0 angle-coordinate along an arc, and from

every open arc microcrack. at different orientations. Here, we use Gauss quadrature rule with

60 integration points for each stable or unstable region.

(3) Obtain new overall elastic-damage compliance S by adding S* to S'.

(4) Apply the next load p and go to step (1).

11.5.2. Some uniaxial tension tests

A number of mixed-mode plane strain uniaxial tension tests are considered in this section for

various different fiber sizes a, microcrack concentrations w (- N(aa)2/A), and initial microcrack

half-angle sizes a. Both stationary and process (kinetic) damage models are employed to predict

the continuous changes in overall elastic-damage compliances and stress-strain responses based on

micromechanics. The composite material considered here is epoxy for matrix and glass for fiber.

Both epoxy and fibers are isotropic and linear elastic. The shear modulus and Poisson's ratio of

the epoxy matrix are it = 346 KSI (2.39 GN/m2) and i7 = 0.35, respectively. In addition, the

shear modulus and Poisson's ratio of the glass fibers are P'2 = 6410 KSI (44.2 GN/m 2) and n2 =

0.22, respectively. The composite volume ratio of the matrix and fiber constituents are 0.8 and 0.2,

respectively. The (plane strain) overall composite Young's modulus and Poisson's ratio is found to

be E = 1151 KSI (7.93 GN/m2) and 7 = 0.3481, respectively, by means of the elementary rule of

mixture (see, e.g., Jones (1975)). Therefore, the plane strain elastic compliance matrix takes the

form: (unit = KSI - )

0.00076383 -0.00040784 0 1
[SO] = -0.00040784 0.00076383 0 (45)

0 0 0.0023433]

Moreover, the interfacial specific surface tension energy (fracture toughness) 27yi is taken as 0.001

Kips/in. (0.175 KN/m).

First, we examine the effects of different initial microcrack concentrations w1 on stress-strain

responses and compliances of the uniaxially reinforced epoxy-glass composite. The initial micro-

crack concentration parameter wi is increased gradually (with 256 increments) from 0 to 0.64. All

microcracks are assumed to be stationary (no growth), open, and of the half-angle size a, = 100.

In view of Fig. 2 in Toya (1974), 141 + a < 650 is required for crack opening. Therefore, arc

microcracks are assumed to be perfectly (uniformly) randomly oriented between 0 = -550 and 4
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= 550; i.e., the probability density of orientation is P(O) = 0.521. The uniaxial tension stress is

applied in the 2-direction, and the lateral direction is denoted as the 1-direction. The axial-stress

(KSI) versus the axial- and lateral-strain (curves corresponding to monotonically increasing values

of wi are displayed in Fig. 2. The elastic stress-strain response is also shown in Fig. 2 for com-

parison purpose. The elastic-damage compliance components S22 and S1 2 vs. wi parameter are

shown in Fig. 3 and Fig. 4, respectively. It is clear that as microcrack concentration increases, the

compliance components S 22 and S12 increase monotonically.

Next, we perform "process model" uniaxial tension tests. Let the fiber radius be a = 0.1 in.

and microcrack number density be N/A = 100. Two initial half-angle sizes of arc microcracks are

considered: ai = 100 and ai = 200, respectively. The axial-stress vs. the axial- and lateral-strain

responses are recorded in Fig. 5. It is noted that before the load preaches a certain critical value pa,,

the stress-strain response is linear (stationary damage model) for either ai = 10' or a, = 20'. After

the critical values pc, are reached, the overall responses then become nonlinear. Double Gauss

quadrature is employed to integrate inelastic compliances and strains contributions from various

microcrack orientations and sizes. For example, in the case of a, = 10', it is found (by numerical

iteration) that the first microcracks to become unstable (propagating) are oriented in the direction

,, = 5.010. Later, as p increases, more "orientation fans" are enclosed within the O-angle bounds

(obtained by numerical iteration) of microcrack growth. Therefore, more and more microcracks

experience growth and finally have Of = 00 and af = 650 . In the case of ai = 200, on the other

hand, it is found that 0,, = 10.590. It is also observed from Fig. 5 that larger initial microcrack size

a, = 200 results in lower critical load level p, for microcrack growth.

Let us now fix the initial microcrack size ai = 100 and vary the fiber sizes and microcrack

number densities: (i) a = 0.05 in. and N/A = 40, and (ii) a = 0.1 in. and N/A = 100, respectively.

The axial-stress vs. the axial- and lateral-strain responses are shown in Fig. 6. The changes in

overall elastic-damage compliances S2, Sn and S 12 versus axial stresses are plotted in Fig. 7, 8

and 9. It is observed that S22 and SI increase as tensile stress level p increases. However, S12 is

negative and decreases as the stress increases; i.e., IS121 increases monotonically.

The above uniaxial tension tests are repeated for fixed initial microcrack size a, = 200. Again,

two sets of fiber sizes and microcrack number densities are considered: (i) a = 0.05 in. and N/A =

40, and (ii) a = 0.1 in. and N/A = 100. The axial-stress vs. the axial- and lateral-strain responses

are shown in Fig. 10. The changes in overall elastic-damage compliances 522, 51I and S12 versus
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axial stresses are plotted in Fig. 11, 12 and 13. Similarly, S22 and S, increase as tensile stress level

p increases. In addition, S12 decreases as the stress increases.

The above numerical simulations illustrate the potential capability of the proposed microme-

chanical damage models to qualitatively explain and quantitatively predict the overall stress-strain

behavior and compliance evolutions. Not a single fitted "material parameter" is employed in the

proposed model. It is also emphasized that the numerical tests presented in this section is for

"cleavage 1" damage processes. Thus, nucleation of new arc microcracks is not included. Fur-

ther, partially or entirely closed arc microcracks, or microcrack kinking (into the matrix) are not

incorporated into the present model. These issues will be topics of future research.
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11.6. Conclusion

A micromechanical damage model is presented in this work, based on Toya's (1974) microme-

chanics solutions and general damage mechanics framework, for uniaxially reinforced brittle ma-

trix fibrous composites. All microcracks are assumed to exist along the fiber/matrix interfaces, and

are modeled as arc microcracks under "cleavage 1" plane strain deformation processes. Thermody-

namic basis is rendered based on a fourth-rank damage tensor. Microcrack-induced inelastic strains

and elastic-damage compliances are analytically derived based on micromechanical bi-material arc-

microcrack opening displacements and probabilistic distributions of arc microcracks. It is noted

that the (plane strain) overall elastic-damage compliance matrix is non-symmetric. Both "station-

ary" and "process" damage models are given in the present work. In particular, microcrack kinetic

equations are given based on micromechanical fracture criterion and microstructural geometry in

a representative volume (area) element. Moreover, simple computational algorithms and a number

of uniaxial tension tests are presented to illustrate the potential capability of the proposed microme-

chanical damage model for fibrous composites. It is emphasized that the present work does not em-

ploy any arbitrary (fitted) "material constants". The proposed framework can be readily extended

to account for biaxial tension loadings, as addressed in Remark 3.1. Issues related to microc-

rack interaction, closed microcracks, microcrack kinking, and microcrack nucleation mechanisms

warrant further studies in the future to extend the proposed method.
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11.8. Figure captions

Figure 1. The local (primed) and global Cartesian coordinates, as well as the polar coordinates

at a typical arc point.

Figure 2. The axial-stress vs. the axial- and lateral-strain under different microcrack concen-

trations w (varying from 0 to 0.64). Note that w S N(aa)2/A. The dotted lines are the undamaged

elastic stress-strain responses.

Figure 3. The overall compliance S22 vs. microcrack concentration w for various stationary

damage model simulations. The dotted line is the elastic response.

Figure 4. The overall compliance S12 vs. w for various stationary damage model simulations.

Figure 5. The axial-stress vs. the axial- and lateral-strain for two different initial microcrack

sizes: ai = 10' and ai = 200. Note that a = 0.1 in. and N/A = 100. These are "process model"

simulations.

Figure 6. The axial-stress vs. the axial- and lateral-strain for two different fiber sizes and

microcrack number densities. Note that a, = 100.

Figure 7. The overall compliance S2 vs. the axial stress p for two different sets of a and N/A

values. Note that a, = 10° .

Figure 8. The overall compliance SI vs. the axial stress p for two different sets of a and N/A

values. Note that a, = 100.

Figure 9. The overall compliance S12 vs. the axial stress p for two different sets of a and N/A

values. Note that a, = 100.

Figure 10. The axial-stress vs. the axial- and lateral-strain for two different fiber sizes and

microcrack number densities. Note that a, = 200.

Figure 11. The overall compliance S22 vs. the axial stress p for two different sets of a and

N/A values. Note that ai = 200.

Figure 12. The overall compliance S, vs. the axial stress p for two different sets of a and

N/A values. Note that a, = 200.

Figure 13. The overall compliance S12 vs. the axial stress p for two different sets of a and

N/A values. Note that a, = 20".
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Figure 1. The local (primed) and global Cartesian coordinates, as well as the polar coordinates
at a typical arc point.



Figure 2. The axial-stress vs. the axial- and lateral-strain under different microcrack concen-
trations w (varying from 0 to 0.64). Note that w N(ak)2 IA . The dotted lines are the undamaged
elastic stress-strain responses.
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Figure 3. The overall compliance S22 vs. microcrack concentration w for various stationary
damage model simulations. The dotted line is the elastic response.
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Figure 4. The overall compliance S12 vs. w for various stationary damage model simulations.
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Figure 5. The axial-stress vs. the axial- and lateral-strain for two different initial microcrack
sizes: ai = 100 and o, = 200. Note that a =0.1 in. and NV/A =100. These are "process model"
simulations.
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Figure 6. The axial-stress vs. the axial- and lateral-strain for two different fiber sizes and
microcrack number densities. Note that a, 100.
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Figure 7. The overall compliance S22 vs. the axial stress p for two different sets of a and N/A

values. Note that ai = 10'.
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Figure 8. The overall compliance S 1 vs. the axial stress p for two different sets of a and N/A
values. Note that a, = 100.
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Figure 9. The overall compliance S12 vs. the axial stress p for two different sets of a and N/A

values. Note that ai = 100.
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Figure 10. The axial-stress vs. the axial- and lateral-strain for two different fiber sizes and

microcrack number densities. Note that ca, 200.
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Figure 11. The overall compliance S22 vs. the axial stress p for two different sets of a and

N/A values. Note that ai = 200.
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Figure 12. The overall compliance S 1 vs. the axial stress p for two different sets of a and

N/A values. Note that a, = 200.
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Figure 13. The overall compliance S12 vs. the axial stress p for two different sets of a and

N/A values. Note that a, = 200.
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A Three-Dimensional Statistical Micromechanical

Theory for Brittle Solids with Interacting Microcracks

111.0. Abstract

A three-dimensional statistical micromechanical theory is presented to investigate the

overall nonlinear mechanical responses of microcrack-weakened brittle solids. The macro-

scopic stress-strain relations of elastic solids with interacting microcracks are micromechan-

ically derived by taking the ensemble average over all possible realizations which feature the

same material mesostructural geometry. Approximate analytical solutions of a two-crack in-

teraction model are introduced to account for microcrack interaction among many random-

ly oriented and distibuted microcracks. The overall effective compliances of microcrack-

weakened brittle solids are derived by further taking the volume average of the ensemble-

averaged stress-strain relations over the entire material mesostructural domain of a represen-

tative volume element. Moreo- er, some special cases are investigated bv using the proposed

framework and other existing methods. It is emphasized that no Monte Carlo simulations

are needed in the proposed framework.
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III.1. Introduction

The nonlinear mechanical responses of damaged solids due to the existence, growth, and

nucleation of microdefects (such as microcracks and microvoids) are of significant importance

to engineers, and have been the subject of many investigations. See Krajcinovic (1989) for

an excellent literature review on damage mechanics. For brittle materials (e.g. concrete,

rocks and ceramics), in particular, microcracks often control overall deformation and failure

mechanisms. To date, the only exact results derived for microcrack-weakened brittle solids

are for dilute microcrack concentrations, where microcrack interactions are entirely neglected.

These micromechanical damage models are called "Taylor's models"; see, e.g., Krajcinovic

and Fanella (1986), Fanella and Krajcinovic (1988), and Ju (1990) for some recent works.

On the other hand, several approximate micromechanical analyses ("effective medium

methods") were proposed in the literature to account for interaction effects of distributed

microcracks. For example, the "self-consistent method" (Hill (1965)) was first applied to

microcrack-weakened solids by Budiansky and O'Connell (1976) with special attention di-

rected to perfectly randomly distributed (isotropic) and weakly interacting microcracks. The

self-consistent method was further developed by Horii and Nemat-Nasser (1983) to take into

account the effects of closed microcracks undergoing frictional sliding. See also Sumarac and

Krajcinovic (1987, 1989), Krajcinovic and Sumarac (1989), Ju (1991), Ju and Lee (1991),

and Lee and Ju (1991). Christensen and Lo (1979) proposed a three-phase "geneialized

self-consistent model". The "differential scheme" was investigated by Roscoe (1952, 1973),

McLaughlin (1977), and Hashin (1988). Further, the "Mori-Tanaka method" was developed

by Mori and Tanaka (1973), Benveniste (1986), and Zhao, Tandon and Weng (1989). Based

on variational principles, Hashin and Shtrikman (1962, 1963) also proposed upper and lower

bounds for composites with inclusions.

Some comparisons and assessments for the self-consistent method, the generalized self-

consistent method, the Mori-Tanaka method, and/or the differential scheme were also pre-

sented by Horii and Sahasakmontri (1990), Laws and Dvorak (1987), Nemat-Nasser and Hori

(1990), and Christensen (1990, for pure shear load only). It is noted that effective medium

methods are only valid for weak or at most moderate microcrack concentrations. Overall

effective compliances as well as anisotropy due to microcracks can be estimated by effective

medium approximations.
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When microcrack concentrations are higher and microcrack spacings are closer, strong

microcrack interactions occur and effective medium theories are no longer appropriate. Em-

anating from this viewpoint, excellent strong microcrack interaction models were proposed

by Horii and Nemat-Nasser (1985), Hori and Nemat-Nasser (1987) for two-dimensional de-

terministic microcracks (not at the overall constitutive level), and by Kachanov and Mon-

tagut (1986), Kachanov (1987), Chudnovsky et al. (1987a,b), Montagut and Kachanov

(1988), Kachanov and Laures (1989), and Laures and Kachanov (1990) for two- and three-

dimensional deterministic (specified) arbitrary microcrack arrays (at the overall constitutive

level). Other literatures are cited and discussed in the reference papers. Moreover, the

important and valuable work due to Kachanov (1987), Kachanov and Laures (1989) rely

on Monte Carlo simulations of a large amount of deterministic microcrack arrays, and de-

pend heavily on large-scale computations to obtain local stresses of many randomly located

microcracks. Therefore, it is desirable to develop innovative and simple statistical microme-

chanical damage theories to account for interactions among randomly located and oriented

microcracks without using extensive random microcrack simulations and large-scale iterative

stress computations.

The purpose of the present work is to establish a three-dime.asional statistical microme-

chanical framework to predict overall effective moduli for brittle solids with many interacting,

randomly distributed microcracks. The proposed statistical framework considers the proba-

bility and conditional probability density functions of microcrack locations and relative con-

figurations. See Batchelor (1970), Hinch (1977), Willis (1977), Chen and Acrivos (1978a,b)

for references. In addition, the ensemble and volume averages of stresses, strains and com-

pliances are systematically constructed based on analytical micromechanics solutions and

statistical mechanics concepts. Therefore, statistical aspects are naturally embedded into

damage theories and macroscopic (averaged) constitutive equations. As a result, we do not

rely on heavy numerical stress computations or extensive Monte Carlo random simulations

involving hundreds of deterministic microcrack arrays.

It is emphasized that the proposed method is fundamentally different from that pro-

posed by Hudson (1980, 1981, 1986). Hudson's method, though using the ensemble average

approach, is based on a second order stiffness theory and thus leads to irrational behaviors

for microcracked solids with moderate or high microcrack concentrations (see Sayers and
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Kachanov, 1991). That is, Hudson's method is designed for small microcrack density. The

proposed approach is suitable for low, moderate or high microcrack concentrations.

A brief outline of this work is as follows. In section 2, an ensemble average approach to

derive damaged stress-strain relations is introduced. Approximate closed-form analytical so-

lutions are subsequently presented for the interaction problem of two aligned but arbitrarily

located penny-shaped microcracks. The overall moduli of a representative volume element

(unit cell) are then derived by further taking the volume average of ensemble averaged local

stress-strain relations over the entire (unit cell) domain at the mesostructural level in Sec-

tion 3. In Section 4, applications are made to a number of special cases. In particular, for

the dilute microcrack concentration case, the present approach recovers the well-known Tay-

lor's model by neglecting interactions among microcracks. Further, for aligned penny-shaped

microcracks, the present method reveals that average tractions and overall compliances are

changed by the presence and interaction of 3-D microcracks. This result is relevant to fiber

breaking in unidirectionally reinforced fiber composites. Comparisons with the Taylor's

model, the self-consistent method and the differential scheme are also presented. Finally,

higher-order microcrack interaction models within the proposed framework are discussed in

Section 5.
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11.2. An ensemble average approach to 3-D aligned microcrack
interaction and effective moduli

We first review some basic background related to the concept of volume-averaged (mesostruc-

tural) stress and strain tensors within the context of a representative volume element (RVE)

or unit cell. The ensemble average of microcrack-induced strains and approximate analytical

solutions of two arbitrarily located and oriented microcracks are subsequently given. Overall

effective compliances of brittle solids with interacting microcracks are then derived within

the framework of statistical micromechanics. Following current literatures, it is assumed

that the volume-average stress C approximately equal to the far-field stress 0--. This typ-

ical assumption may be removed and significant further improvements are very promising.

These issues will be addressed in a forthcoming paper.

111.2.1. Ensemble average of microcrack-perturbed stresses and s-

trains

Due to the existence and interaction of microcracks, local stresses and strains in the

matrix material are perturbed. The ensemble average approach hinges on the concept that

local stresses, strains and compliances (or stiffnesses) at a typical point within a RVE of a

microcrack-weakened solid can be obtained by averaging over the ensemble of all statistical

realizations of randomly distributed microcracks. Batchelor (1970), Batchelor and Green

(1972), and Hinch (1977) applied this approach to the study of fluid suspensions within

the framework of pairwise (second order) interaction. The ensemble average approach with

pairwise interaction was later applied to composite materials with interacting inclusions (in-

homogeneities) by Willis and Acton (1976), as well as Chen and Acrivos (1978a,b). Recently,

Ju and Chen (1990a,b) proposed two-dimensional (second order and higher) micromechan-

ical damage theories for brittle solids with interacting slit microcracks by employing the

ensemble average method and micromechanical fracture mechanics. It is noted that local

displacements, strains and stresses vary with positions within a RVE.

For simplicity, we consider a two-phase composite composed of a linear elastic matrix

and many penny-shaped microcracks. The local strain tensor at a point x within the RVE

takes the form:

E(x) = S0 : o!(x) + E*(x,C) (1)
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where c and a, denote the local strain and stress, respectively; c* is the perturbed strain

due to the existence and interaction of microcracks; and C denotes the set of all possible

configurations of the microcracks. It is emphasized that c* is zero if x is a point in the

matrix and non-zero if x is a point on the microcrack surfaces. Taking the ensemble average

over Eq. (1), we arrive at

(W)(x) = S0 : (a)(x) + (e)(x) (2)

where the angle brackets (.) signify the ensemble average.

Throughout the development of this paper, for simplicity, we shall assume that the solid

is locally homogeneous (Hinch (1977)) and penny-shaped microcracks do not intersect one

another. Locally homogeneity implies that all probability density functions (PDF) do not

vary under small translation on a macroscopic length scale. It can be shown (Ju and Chen

(1990a)) that, in the case of microcracks, the perturbed strain can be expressed as

(E)(x) = f(x) (IuJ 0 n + n iu])(x'x,G)f(9) d~dS (3)

Here, Q = (a, n) indicates the microcrack length (radius) a and orientation n. Furthermore,

x' denotes a point on the surfaces (Si) of a microcrack centered at x; f(x) is the PDF for a

microcrack being centered at x; Lu] is the vector of microcrack opening displacements; and

f(G) is the PDF for a microcrack with a geometry Q. If all penny-shaped microcracks are

aligned (parallel) and of equal size, then there is no variation in g. This could correspond to,

for example, microcracks generated by fiber breaks in unidirectional fiber composites (see,

e.g., Laws and Dvorak (1987)). In this event, Eq. (3) can be simplified as follows

(E)(x) = f'(x) j 7(juJ ®n + n ® [u])(x'lx) dS (4)

It is well known that, for an open penny-shaped microcrack with radius a embedded in

an infinite linear elastic isotropic matrix, the microcrack opening displacements at x' (at a

distance p from the center of the microcrack) are:
{ -} VE(2-) 2 }(5)

f 8(1 - /a t, )  2 p
lu'I 7r( -v (2 _- Op

where E and v = the Young's modulus and Poisson's ratio of the virgin matrix material,

respectively. Moreover, p, s and t = the z-direction normal, the x-direction shear and the



A 3-D Statistical Micromechanical Theory 58

y-direction shear stresses projected on the microcrack surface in its local coordinates; see

Fig. 1 for a schematic plot.

If all (open) microcracks are aligned (parallel), then we can define n = (0,0, I)T. By

substituting Eq. (5) into (4) and carring out the integration, we obtain (assuming equal

microcrack size)

(e*)(x) = (x) 3E(2 - v) ag. (T) (6)

where (the Voigt's notation)

(e*) }{e)x (7)le;) 2(fy)

In addition, g is the transformation matrix and T is the local stress vector:

0 001
0 0 0

g 2-v 0 0 T= S(8)
0 0 0 (
0 0 2
0 2 0J

In the event of distributed (nonuniform) microcrack lengths and orientations, similar expres-

sions can be constructed accordingly.

On the other hand, the local stress vector (T) can be shown to be (see Eq. (14) in

Sec. 2.2):

T = T- +t= soo + (9)

Here, T"o denotes the unperturbed local stress vector due to remote loading, and t denotes

the local stress perturbation due to three-dimensional microcrack interactions. In what

follows, attention is focused on pairwise (second order) microcrack interactions. Higher

order microcrack interactions will be discussed in Sec. 5. By assuming that all microcracks

are aligned with a chosen global coordinate system, the stress Too due to far field loads can

be expressed as

Too = Ko. TOO (10)
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where [ 0 0 1 0 0 0 0 00
Ko[ ggTo{ z~ (11)KO0 0 0 0 ° 0 1 Z0

00 0 0 1 0

The ensemble average of local stress perturbation, on the other hand, takes the form (as-

suming uniform size and aligned orientation):

(T)(x) = ()(xx1)f(xJx) dx, (12)

where (')(xxl) = the ensemble-average stress perturbation for a microcrack centered at

x over the subclass of realizations having a microcrack centered at x1 ; and f(xljx) = the

conditional PDF for finding a microcrack centered at x, given a microcrack centered at x.

Further, E designates the active (open) integration domain which depends on the loading

conditions.

The conditional PDF f(xi Ix) can be simplified to f(xl) if microcracks do not intersect

and reasonable randomness holds (Hinch (1977)). The local homogeneity assumption enables

us to further approximate f(xl) by f(x). Therefore, Eq. (12) can be recast as:

(T)(x) = f(x) I (rk)(xlx,) dx, (13)

The quantity !C(xlxl) corresponding to pairwise microcrack interaction will be the main

subject of Sec. 2.2.

111.2.2. Approximate explicit solutions for pairwise interaction of

aligned microcracks

The objective of this section is to construct approximate closed-form explicit expressions

for perturbed stresses ti due to two-microcrack interaction so that the ensemble-average

formalism proposed in Sec. 2.1 can be realized. It is possible, in principle, to derive expres-

sions for ik in the interaction problem involving two 3-D, arbitrarily oriented and located

penny-shaped microcracks. However, the general solutions of two-microcrack interaction are

rather complicated and no reasonably compact closed-form explicit solutions are possible

(although numerical solutions are certainly feasible). Therefore, for demonstration purpose,
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attention will be foucused on explicit solutions of two randomly located, aligned (parallel),

equally sized, penny-shaped microcracks embedded in infinite linear elastic isotropic matrix.

The "pseudo-traction" method is adopted here to derive approximate expressions for t

since exact solutions are not yet available. For mathematical simplicity, only the first term

of Taylor's expansion of the local stress field is used to represent the average stress across the

microcrack surface. Higher order terms in polynomial expansions may be included if desired,

however, at the high cost of a much larger system of equations and much more complicated

analytical expressions. Stemming from a different viewpoint, the more accurate "transmis-

sion factor"-type formulation proposed by Kachanov (1987) is well suited for deterministic,

numerical computations. Within the framework of statistical ensemble average, nevertheless,

closed-form explicit solutions for stress-interaction are warranted.

Figure 1 shows the local coordinate systems for microcracks 1 and 2 of radius a. The

z-axis is chosen as the direction normal to a microcrack surface. In accord with the pseudo-

traction concept, the problem of two interacting microcracks subjected to far field stresses

can be decomposed into a homogeneous problem and two sub-problems (see also Ju and

Chen (1990a)). 'n the homogeneous problem, a microcrack-free solid is subjected to applied

stresses at far field. In the sub-problem j (j = 1, 2), an infinitely extended solid contains only

one penny-shaped microcrack and is subjected to zero remote stress at infinity. Since stresses

vanish on microcrack surfaces (Cj), the following boundary conditions must be satisfied (j

= 1, 2):
-p-,+ p.',+ P = 0 - s.,+s° + 9j = 0  -tj +too+t =0 (14)

In the first sub-problem (containing only 'microcrack 1'), let us define a cylindrical

coordinate system with the center of the 'microcrack 1' as its origin. Accordingly, the center

location of the 'microcrack 2' can be characterized by (p, 0, z); see Fig. 1. For convenience,

we shall introduce the following definitions:

+- o'z +- - a - 2ia., (15)

OaZ = or., ; r .a, + i r,  (16)

If the surfaces of the 'microcrack 1' are subjected to applied normal stress p(l), then perturbed
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stresses at the 'microcrack 2' location are given by (Fabrikant (1989, p. 252-257)):

a'1)= 2PO)~ al~e2' (l~s s- a2)l/2 r z2 [a2(6l - 7 21 +_p2) - 51 ] }
02 =sl - j(i - 2v) ± (ls - I,) (12 - a2) 1(17),) 2p~1) aal - -aa2 )1/2 1 (a )]z2 [l + a 2 [14 + 22 2  + 2 Z2-p)

T2= -12 - ( ( _ 2)3
l 2. l -Il -si2 n - 1 2

.,(1) 2p 1 2te,,,(1 - a2 )/2 t 2 4I - 52 ) + 2_1
01 12 2 (l 2) ( 2 2))

J1 ([(a +p) + z]/2- 11- p)+ ]1' }

22 2 ( a +(18)
12 1 {[(a p 2 ) 14 + [(a 2 + z2]12}

Furthermore, when the surfaces of the 'microcrack 1' are loaded by the combined shear

stresses tO)~ = sO1 +itO), then perturbed stresses at the 'microcrack 2' location are (Fabrikant

(1989, p. 257-261)):) ati (W2 
-2 _)2/2 zl (1 2 - a2)1/2 [a2 (4l2 - p2 )-+-,1 ]

_,1, - r2 v)e { 0)-€)-2(1+-v) 12(l s - l) + 2(lf-i ) f 1)
-2e''r(2 1 -- ) 2  1 ) 1 '2 21) 1

/M(1) --2(es + ')el(l2 - a2)1/ 2 [a 2 1(412 --5p 2 ) + 41
z = 7r (1-v) 12_ 12 3

7- i r(2 -v) 12 2 1-)]

+ z(a2 - ll) ' / [a2(6/ - 21 + p2 ) - 54] [ le 2i  .])

2/ (19)
where o e is the complex conjugate of t The total perturbed stresses due to combined

normal loading p(l) and shear loading trs) are therefore obtained:

or I = + + V[) al (a I. ;l~. -= a( __

r1 v) 12 2 1 1+2 1(20)

1/0) = -2ev).a I -,r (1) .l 2 -a,4 l)eV (4( _ ..(,+)M N

a ) ' ' + ,, 2 ; 7=z +T

It can be shown that the Cartesian stress components are

2 4( o (1_ 12 _7-[ 2 e

- r (2) + Re2 1,)2 ( 1 [) 1 Re ,1)) 2

or1) = = 2 (21)

r() = Im(v)) Im(1))

2~ ~~~z _ 12)/2[a 1 1 +p2 14
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where "Re" and "Im" are the real and imaginary parts, respectively, of a complex variable.

Eq. (21) can be recapitulated into the following matrix form:

(1) - b,+b 2  C+C d, +4 M
Uxz 2 2 2

i -b c -2 di -d2 1

(M) _ 7zz b3 C3 d3 s(22)

2 2 t
Oly b5 C51a, b6 C6 d6

where definitions of the parameters hi, ci, and di can be found in Appendix I. Symbolically,

we can express r(1) as a function of coordinates and normal and shear stresses as follows:

_.o= -r (p, 01 z; PI,1, t) (23)

Since microcracks 1 and 2 are aligned, the perturbed normal and shear stresses along

the surfaces at the 'microcrack 2' location are

P2 = ez • -(1 e, = or(')

s2 = ez-.(I).e= -or') (24)
12 = ez. 1M e. = O 1)

where e., ey, and ez are the unit base vectors in the Cartesian (x, y, and z) coordinates.

Similarly, in the sub-problem 2 (containing only 'microcrack 2'), it can be shown that

the perturbed normal and shear stresses along the surfaces at the 'microcrack 1' location are

4 2 ) _=(2) .() (25)

where symbolic representations similar to Eq. (23) and (24) have been employed:

r(2)=(pi_ ,z;p 2 ,-s 2 ,t) (26)

Eq. (24) together with (25) then leads to

0 0 0 b(2) (2)  d(2)

1 0 0 0 -b 2  c 2  5 Sl
I 0 0 0 b(2)  (2) d 2 tl

P2 = b(1) c 1) d 1)  0 0 0 P2

b ) (1) d1) 0 0 0
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For convenience in the following derivations, let us define

Pr Pr)
f tj f 2 ti' T - f t 28p f ; _ J ; I

T1- T00 5 ; (28)
P2 P2  P2

and a the 6 x 6 matrix in Eq. (27). With these notations at hand, Eq. (27) can be

rewritten as

I-2= a T_ 2  (29)

Since T1 - 2 = To12 + ' 1 - 2, t 1I- 2 can be solved from Eq. (29)

"I'_2=:k - T'_2 ; where K=a.(I-ce) -  (30)

Further, we define t M (pl .l, 1)T and K, = the first three rows of IK. Hence, from Eq. (30),
the perturbed stresses on surfaces of a microcrack due to the existence of a second microcrack

are:

T = K. .T',_2 (31)

Finally, since the two microcracks under consideration are aligned, it can be easily shown
that

0010

= 0 0 0 0 1 0K 2 . (32)
P2 0 0 1 0 0 0 X
,t 00001

From Eq. (32) and (31), we conclude that the average perturbed stress T over surfaces of a

microcrack is simply:

K =K.r' ; where K=K1 .K 2  (33)

Substitution of Eq. (33) into (13) then renders realizations for (T) in the previous section.

Therefore, the ensemble average approach is completely defined. For non-aligned penny-

shaped microcracks, more complicated (though analogous) derivations will be involved.

111.2.3. Some test problems for two-microcrack interaction

A number of test problems are considered in this section to examine the performance

of the approximate analytical solutions presented in Sec. 2.2. These include normal and
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shear loadings for two aligned coplanar or stacked penny-shaped microcracks. It is not

our intention, however, to propose highly accurate analytical solutions to compute local

stresses and stress intensity factors (SIFs) at all points on microcrack surfaces for a two-

microcrack interaction problem. Instead, reasonably accurate analytical average perturbed

stresses (in terms of elementary functions) over microcrack surfaces are sought in order to

exploit the ensemble average approach. In fact, if one is interested in deterministic 3-D

microcrack interaction, excellent numerical method has been proposed by Kachanov and

Laures (1989). It is noted that key steps in Kachanov and Laures (1989) method also focus

on the computation of average pairwise "transmission factors" and average tractions. Once

average tractions become known, one can certainly compute projected local stresses and SIFs

at any point on microcrack surfaces. In general, the simple analytical solutions presented in

Sec. 2.2 are not as accurate as those proposed in Kachanov and Laures (1989). Nonetheless,

the latter relies on extensive numerical computations of transmission factors for all points

on microcrack surfaces and is therefore not employed here.

It is emphasized that, given an existing microcrack, the location of the second microcrack

is random within the ensemble average framework. Although stress interactions between

two moderately spaced random microcracks are not very strong, their cumulative effects are

important due to high spatial probability. On the other hand, stress interactions between two

closely spaced random microcracks are strong yet their spatial probability is lower. Therefore,

contributions from both closely and moderately spaced microcracks should be accounted for

in the ensemble average approach. The ensemble-average spacing of microcrack arrays,

clearly, depends on microcrack concentration.

Case I: Two equal-size coplanar microcracks under normal loading. Though numerical

results for SIFs are available for two coplanar microcracks under normal and shear loadings

(Fabrikant (1987, 1989)), exact results for average tractions projected over microcrack sur-

faces are not documented. Nevertheless, Kachanov and Laures (1989) show that their results

for SIFs are very close to those of Fabrikant (1987, 1989) for two equal-size coplanar micro-

cracks. Therefore, the average tractions computed by Kachanov and Laures (1989) should

be quite accurate in the case of coplanar microcracks. The ratios of perturbed vs. far-field

average normal stresses (p/pO') are listed in Table 1 for various 1/2a values (the Poisson

ratio P = 0.25). Here, 1 signifies the center-to-center distance between two microcracks and
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2a is the microcrack size. For example, l/2a = 1.00025 means that the smallest distance be-

tween microcrack tips is only 0.00025a. The results reported in Kachanov and Laures (1989)

and relative differences between the two results are also given in Table 1 for comparison.

From Table 1, it is clear that interaction renders average stress amplification. The effect of

microcrack interaction decays as the distance between two microcracks increases. Moreover,
the differences between our simple calculations and those of Kachanov and Laures (1989)

are very small in general.

Case II: Two equal-size coplanar microcracks under shear loading. The ratios of per-

turbed vs. far-field average shear stresses (r/Tr° ) are listed in Table 2 for various l/2a

values (the Poisson ratio v = 0.5). From Table 2, it is seen again that interaction renders

average stress amplification. The differences between our simple calculations and those of

Kachanov and Laures (1989) are again rather small; see Table 2.

Case III: Two equal-size stacked microcracks under normal loading. The ratios of per-

turbed vs. far-field average normal stresses (p/pOc) are listed in Table 3 for various l/2a

values (the Poisson ratio v = 0.25). Obviously, from Table 3, interaction renders strong

average stress shielding. The degree of shielding in this case is much stronger than the degree

of amplification in Cases I or II. Fabrikant (1989) did not provide numerical results for SIFs

nor average stresses for two stacked microcracks under normal or shear loadings. Therefore,

exact results are not available. For comparison, the differences between our simple calcula-

tions and those of Kachanov and Laures (1989) are listed in Table 3. It is observed that the

difference is not very significant if l/2a is greater than 0.5. The difference increases as the two

microcracks move closer, due to sharp variations of stress fields in the close neighborhood of

interz ting microcracks.

Case IV: Two equal-size stacked microcracks under shear loading. The ratios of per-

turbe vs. far-field average normal stresses (p/po) are given in Table 4 for various 1/2a

values (the Poisson ratio v = 0.25). From Table 4, interaction renders average stress shield-

ing when the distance I is small and very wcak stress amplification when 1/2a > 0.5. The

differences between our simple calculations and those of Kachanov and Laures (1989) are

small for l/2a greater than 0.25; see Table 4.

Since pairwise microcrack interactions are random (probabilistic) within the framework

of the ensemble average approach, the errors associated with the present approximate anal-
ysis should be statistically averaged over all possible realizations. Therefore, the (pairwise)
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ensemble-average error of the present method should be small as long as the microcrack

concentration is not too high.
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111.3. Effective moduli of brittle solids with interacting microcracks

With the ensemble average framework and analytical pairwise interaction solutions at

hand, we are now ready to construct the ensemble-average constitutive equations of brittle

solids with many randomly located, interacting microcracks. By substituting Eq. (10) and

(33) into (9) and taking the ensemble average, we arrive at

(T) = (K 0 + f(x)(K)) . TOO (34)

where

(K) JK dx = J Kr2 sin k drdtbdO (35)

In the foregoing equations, it is implicitly assumed that all microcracks are of equal size and

of same orientation. In addition, the spherical coordinate system (r, 0', 0) is used to describe

the random location (xi) of the second microcrack relative to the first random microcrack

centered at x. Note that b varies from 0 to 7r and 0 ranges from 0 to 27r. If we normalize r

with respect to the microcrack radius a (i.e., r/a), then Eq. (35) can be recast as

(K) = a3 (k' ) = a' J K 2 sin d~dPdO (36)

Combining Eq. (6), (34) and (36), we obtain the local ensemble-average damage-induced

strain (at a typical point x):

(e*)(x) = (S*)(x) . roo (37)

Here the ensemble averaged, damage-induced local compliance has two components:

(S')(x) = (S1)(x) + (S*2 )(x) (38)

where

(S*')(x) = 362 - v f(x)a 3. Ko3E(2 z~')(39)
16(1- V2) f2(X)ag . (k)

-3E(2 - v)

It is noteworthy that Eq. (39) actually reveals physical nonlocal effects in constitutive equa-

tions through the ensemble averaging process. That is, the stress-strain laws at a material

point x within a RVE depend on the constitutive laws of all neighboring points. This is a

physical nonlocal approach, at variance with postulated nonlocal theories due to Eringen and

Edelen (1972).



A 3-D Statistical Micromechanical Theory 68

To obtain volume averaged moduli due to microcracks within a RVE, one simply applies

the volume-average operator to Eq. (38)-(39). As a consequence, we have

(s) j (S- (X) dX (S1)(x) dx + j(S2)(x) dx] (40)

where
TS 16(1 -Ko a 3fv f(X) dx

3E(2 - ) V (41)

= l6(l) =)g.-(k) a6fv f 2 (X) dX
(E(2 - v2) V

Let us assume that there are N microcracks in the RVE; i.e,

J f(x) dx = N (42)

Further, consider the case in which the variance of the PDF (f(x)) for locations of microc-

racks is small (e.g., uniform probability). We may therefore write

f2 (x dx - [fv f(x) dx] _ N 2  (43)

Substitution of Eq. (42) and (43) intc (41) then leads to
16(1 - v'2). C

(SI) -- 16(l - v2) g " Ko w
3E(2 - v) (44)

(S*2 ) = 16(1 - v2 )g (K) w2

3E(2 - v)

where
-Na 3  (45)-v

is the (volume-average) microcrack concentration parameter. It is noted that (S "1) actually

corresponds to the first order contribution due to non-interacting microcracks; i.e., the simple

Taylor's model is recovered. Moreover, (S "2) represents the second order contribution due

to pairwise microcrack interaction.

Finally, the overall (volume-ensemble averaged) effective moduli for a microcrack weak-

ened solid is obtained by adding the elastic compliance SO to (S):

(S) S0 + (S") + (S'2) (46)
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In particular, in the case of 3-D linear isotropic elasticity, S° reads

1 -v -V 0 0 0 1
-V 1 -v 0 0 0

So=i 0 0 2(1 0) 0 0 (47)
0 0 0 0( 00
0 0 0 0 2(1 + v) 0

0 0 0 0 0 2(1 + v)j

It is emphasized that the local macroscopic constitutive laws for a RVE are recovered by the

volume averaging process.
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111.4. Some numerical examples

In this section, some numerical examples involving aligned microcracks are presented to

illustrate the proposed ensemble-volume average approach in three-dimension. In the first

example, effects of microcrack interactions are neglected and the well-known Taylor's model

is recovered. Subsequently, the proposed second order (in microcrack concentration) micro-

crack interaction model is implemented. Finally, we compare the results of the present ap-

proach with some existing methods, including the Taylor's model, the self-consistent method

and the differential scheme. Closed microcrack contributions to compliances are neglected

in this work.

111.4.1. Dilute non-interacting aligned microcracks

Let us consider the case in which effects of microcrack interactions are totally neglected.

This can be done by simply dropping the term (S,2) in Eq. (46):

S) = so + (S-,) (48)

From Eq. (8), (11), and (,4), we obtain

o 0 0 0 0 01

Combination of Eq. (47) and (49) then yields

s1 s1 1% 0 0 0
s2i S22 S% 0 0 0

S S31 S32 3n 0 0 0 (50)
0 0 0 S44  0 0
0 0 0 0 S55  0
0 0 0 0 0 66

where 1 = xx, 2 = yy, 3 = zz, 4 = xy, 5 = yz, 6 = zx (Voigt's notation); S-, components

are given in (47), and

s33 = son + s
-gs = SS + s5-5(51)

s-66 = + S;6
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in which 16(1 - v2 )
3E

32(1 - v2 ) (52)
3E(2 - v)

It is observed that only the three compliance components in Eq. (51) are changed due

to the presence of randomly located, aligned, penny-shaped microcracks. One notes that

Eq. (50)-(52) indeed recover the well-known Taylor's model. Further, the effective constitu-

tive equations belong to the category of transverse isotropy. This is typical of fiber breaks in

unidirectional reinforced fiber composites.

111.4.2. Aligned interacting penny-shaped microcracks

We now focus on the proposed ensemble-volume averaged, pairwise interaction model.

For a given microcrack concentration w, the overall effective moduli in Eq. (46) can be eval-

uated by carrying out the integration in Eq. (36). That is, one needs to perform integration

for the matrix K over the active microcrack domain ( , 0b, 0). It is emphasized that the

values of K decay rapidly as the distance between a pair of random microcracks increase.

Therefore, compliance contributions due to remote integration region can be neglected.

The integration in Eq. (DC) can be effectively computed by the Gauss quadrature scheme

with three independent variables - C, tb and 0; see Table 5 for convergence behavior. Our

numerical experiments show that use of , = 20 (or rmax = 20a) is quite acceptable; i.e.,

contributions from the C > 20 domain can indeed be neglected. In Table 5, the minimum

radius of integration for r (or C) is assumed to be rmi,, = 2a (or Ci, = 2). The only

nonzero components in (k) are simply (K,3), (k 26) and (A'35 ) (the latter two are equal). It

is observed that the normal component ((k13)) is much greater than the shear components

((k26) and (K(35). Furthermore, use of r,,,i_ = 2a implies that the minimum allowable

distance between any two microcrack centers is 2a. Thc ,.re, according to the "face-center

cubic" calculation, the maximum allowable w is 1/4V2 0.1768 for r,,, = 2a. Note that

the maximum allowable microcrack density would be 0.741 if w is defined as 4rNa3 /3V

(Budiansky and O'Connell, 1976).

To achieve higher maximum permissible microcrack densities, various minimum radii of

integration rmn are used to compute (1k); see Table 6 for details. The value of Cm.., is
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chosen as 20.0 in Table 6. We observe significant increases in both ('13) and (k26) as

m,,,ij, decreases. The maximum microcrack concentration w corresponding to the ,m,, = 1.1a

case is found to be 1.0627 (or 4.451 if the definition in Budiansky and O'Connell (1976) is

employed). It is emphasized that Table 6 is not a summary of convergence behavior, but a

display of (1k) for different maximum allowable microcrack densities.

For convenience, let us define (k 13) = k1 and (k26) = (A35) = k2. Therefore, according

to Eq. (8) and (44), we obtain

0 0 0 0 0 0
100 0~ 0 0 01

(S*2)= 16(1 ) 2 0 0 (2-v)kl 0 0 (53)
3E(2- v) 0 0 0 0 Q 0

0 0 0 0 2k 2  0
0 0 0 0 0 2k 2 ]

Adding Eq. (53) to (50), we thus arrive at the expression for overall effective complaince with

second order microcrack interaction. Apart form the three compliance components (S3),

(Ss5 ) and (S66), it is seen that all other components are identical to the elastic components.

In particular, the three compliance components which change under microcrack interaction

take the following explicit forms:

(S 33) = S 3 + 16(1 - v+) ( ( 5
3E V2 )  (54)

3E(2 - v)

111.4.3. Comparison with some existing methods

The effects of fiber breaks and aligned penny-shaped microcracks on the stiffness of

unidirectional fiber composites have been studied extensively in the literature. We refer

to Laws and Dvorak (1987) for excellent presentation by using the self-consistent method

and the differential scheme. It is noted that, in Laws and Dvorak (1987), the microcrack

density is defined as a =- 8Naa/V; i.e., their a is equal to 8 in this paper. The maximum

microcrack concentration considered in Laws and Dvorak (1987) is W = a/8 = 0.125. The

macroscopic (overall) material behavior is, not surprisingly, transversely isotropic. It should

be realized that the Taylor's model, the self-consistent method and the differential scheme
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all belong to the category of "effective medium" approaches. Namely, theses methods do not

depend on the distributions of microcrack locations at all.

In the following numerical computations, the Young's modulus E0 is taken as 0.5 MPa

and the shear modulus Go as 0.2 MPa (v, = 0.25) for the virgin matrix material. The overall

(ensemble-volume averaged) longitudinal normal and shear compliances, (S3) and (Ss), are

plotted against the microcrack concentration parameter w in Figures 2 and 3, respectively.

The values of ki and k2 in Eq. (54) are taken as 1.049792 and 0.355988, respectively, which

correspond to , = 1.1 (i.e., the maximum allowable density w = 1.0627). Note that, once

more, w = 1 corresponds to a = 8 in Laws and Dvorak (1987). For comparison, the results

obtained by using the Taylor's model, the seli-consistent method and the differential scheme

are also displayed in Figures 2 and 3. We would like to comment that: (a) the Taylor's

model is really suitable for dilute microcrack concentrations; (b) the self-consistent method

and the differential scheme are suitable for low or moderate w; and (c) the proposed statistical

pairwise microcrack interaction model is suitable for moderately high (not extremely high)
..

Figures 4 and 5 show the effect of microcrack density w on the normalized longitudinal

Young's modulus EL/Eo and shear modulus GLIGo for four different models. We have em-

ployed the standard notation: EL = (S33) and GL (S5 5 ). In addition, it is straightforward

to express the normalized moduli in Figures 4 and 5 as follows for the Taylor's model

EL 1 GL 1
Eo 1 + 5W Go 1 + 2.28571w (55)

and for the present model

EL 1 GL 51

Eo 1 + 5w(1 + 1.05w) Go 1 + 2.28571w(1 + 0.356w) (56)

I''!
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M1.5. Higher order ensemble-average formulation of microcrack in-

teraction

The statistical micromechanical model presented so far is based on the concept of pair-

wise mnicrocrack interaction. This pairwise microcrack interaction mechanism essentially

corresponds to a second order damage theory since it involves terms of w2. The classical

Taylor's model, on the other hand, is a first order microcrack theory since it involves only

terms of w. Within the context of the ensemble-volume average approach, one can system-

atically incorporate many-microcrack interaction mechanisms into the proposed ensemble

average framework (see Ju and Chen (1990. in essence, one needs to re-derive the en-
semble average of the perturbation in local stress field due to n-microcrack interactions

(n > 3); see Eq. (9)-(12). That is, by formulating and computing higher order corrections on

local stress fields (T) due to neighboring microcrack interactions, one can construct higher

oder microcrack interaction models.

To illustrate the foregoing statements, let us consider a three-microcrack (third order in

w) interaction mechanism within the proposed framework of the ensemble-volume average

approach. For simplicity, we assume that all microcracks are aligned and of equal size.

Following the definitions and assumptions described in Section 2.1, one can .ecapitulate the

local ensemble stress perturbation in Eq. (9):

+ T +(57)

where (t) is the first order local ensemble stress perturbation due to pairwise microcrack

interactions (see Eq. (9), (12)), and (T) is the second order local ensemble stress perturbation

due to the higher (third) order microcrack interactions. In particular, (T) can be expressed

as (cf. Eq. (12))

(T) = j()(x;IX 2 )f(x2 Ix; x) dx2  (58)

Here, (T)(x; x1 1X2 ) is the second order ensemble-average stress perturbation of a microcrack

centered at x, given a microcrack centered at x1 , over a subclass of reali ations which have a

microcrack centered at x 2. Further, f(x 2 Ix; x) is the conditional probability density function

(PDF) for finding a microcrack centered at x2 given two microcracks fixed at x and at x,.

The conditional PDF f(x 2 Ix; x) can be further simplified to f(x) by the assumptions of local
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homogeneity and reasonable randomness (i.e. statistical independence). The active (open)
integration domain - depends on loading conditions and ranges of microcrack interactions.

The solutions of T (or the total stress vector T) for a system of three (or many) arbi-
trarily located microcracks were previously investigated by Kachanov and Laures (1989). In
particular, Kachanov and Laures (1989) pursued extensive numerical computations to ob-
tain the "transmission factors" for local stresses. Alternatively, one can derive approximate
analytical closed-form solutions for T by following the procedures presented in Sec. 2.2 of

this paper.

For clarity, let us express T and (e*)(x) as follows (cf. Eq. (34), (37) and (38), assuming
local homogeneity and reasonable randomness):

(T) = (Too + t + T) = (Ko + f(x)(K) + f2 (x)(K')) . To (59)

(e*)(x) = {(s'l)(x) + (S' 2)(x) + (S-3 )(x)} .oo (S*)(x) • (60)

where T K'. r- and (cf. Eq. (39))

(S 1 )(x) -- EV2) f(x)a3g " Ke (61)
3E(2 - V

16(1 - ) fxag (1k) (62)

(SI)(x) - 3E(2 - v)

(S13)(x) - _V2 ) f (x)a'g. (Kt') (63)

In Eq. (63), we have defined (k) = 1/a" (K'). It is emphasized that both K0 and Ik are
expressed explicitly in closed-form formulas. Similarly, Ik' (or 1) can also be constructed
in closed-form as follows. One starts by expanding Eq. (14) into nine linear equations with
j = 1,2,3. Then, one obtains expressions similar to Eq. (22), with the understanding that
permutations 1-2, 2-3, 3-1 are involved. Eq. (24) in Sec. 2.2 is modified to include the third
microcrack's contribution to stress perturbations. Subsequently, Eq. (27) is expanded to a
9 by 9 system with cr denoting a 9 by 9 coefficient matrix. Therefore, we arrive at explicit
formulas similar to Eq. (30)-(33); and Ik', "'1 can be expressed in closed-form as in the two-
microcrack interaction problem. Finally, it is noted that the computation of (k') involves
integration over the domain of all possible positions of two active neighboring microcracks

(cf. Eq. (36)).
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Following the standard procedures presented in Sec. 3, it can be shown that (S- 3) in

Eq. (39) introduces the third order terms (in w3) to overall compliance due to third order

microcrack interactions. Therefore, a third order statistical micromechanical model can be

actually constructed. By repeating the foregoing procedures, we can formulate a complete

(though very complicated) hierarchical family of statistical microcrack theories of arbitrary

(desired) orders.
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111.6. Conclusions

An innovative three-dimensional statistical micromechanical theory for microcrack-weakened

brittle solids is presented based on the concepts of ensemble-volume average and pairwise

microcrack interaction. A physically "nonlocal" description of the material behavior can

be obtained during the ensemble average process. The overall compliances of microcrack-

weakened brittle solids are derived by performing ensemble-volume averaged integration over

the entire domain of a representative unit cell. To account for microcrack interaction effects,

the ensemble average integration is performed over a finite "interaction radius". The pro-

posed approach is fundamentally different from existing effective medium methods which do

not depend on locations and configurations of microcracks, Further, the proposed microcrack

interaction framework does not require the use of Monte Carlo simulation. Some numerical

examples are given to illustrate the proposed model. The resulting predictions are compared

with other existing methods. Higher order microcrack interaction formulation is also briefly

presented.
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Table 1. Two equal-size coplanar microcracks under normal loading (v = 0.25)

1/2a Present Kachanov Difference(%)

1.00025 1.0354 1.0837 4.46

1.005 1.0348 1.0779 4.00

1.05 1.0296 1.0529 2.21

1.1 1.0251 1.0398 1.41

1.15 1.0215 1.0315 0.97

1.25 1.0161 1.0214 0.52

1.5 1.0088 1.0104 0.16

2.0 1.0035 1.0038 0.03

2.5 1.0018 1.0019 0.01
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Table 2. Two equal-size coplanar microcracks under shear loading (vi 0.5)

I/2a Present Kachanov Difference(%)

1.005 1.0681 1.1017 3.05

1.05 1.0580 1.0703 1.15

1.25 1.0317 1.0292 0.24

1.5 1.0174 1.1)44 0.30

1.75 1.0106 1.0084 0.22

2.0 1.0070 1.0054 0.16

2.5 1.0035 1.0026 0.09

3.5 1.0013 1.0006 0.07
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Table 3. Two equal-size stacked rnicrocracks under normal loading (v = 0.25)

1/2a Present Kachanov Difference(%)
0.05 0.5004 0.5583 10.37

0.25 0.5383 0.6689 19.52

0.35 0.5836 0.7158 18.47

0.5 0.6667 0.7777 14.27

0.75 0.7928 0.8562 7.40

1.0 0.8754 0.9073 3.52

1.5 0.9505 0.9588 0.87
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Table 4. Two equal-size stacked microcracks under shear loading (v =0.25)

1/2a Present Kachanov Difference(%)

0.05 0.5549 0.6613 16.09

0.25 0.8214 0.8886 7.56

0.5 1.0002 0.9837 1.68

0.75 1.0233 1.0053 1.79

1.0 1.0180 1.0084 0.95

1.25 1.0120 1.0072 0.48

1.5 1.0080 1.0055 0.25

2.0 1.0039 1.0031 0.08

2.5 1.0021 1.0026 0.05
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0 Table 5. Convergence behavior of (I() vs. (given ,n = 2)

tmx= rmax/a Ak 3) (l?26) = (.k35)
* 4.0 0.150807 0.059503

6.0 0.168554 0.066656

8.0 0.173029 0.068467

10.0 0.174644 0.069121

20.0 0.176139 0.069728

40.0 0.176327 0.069804

80.0 0.176351 0.069828
160.0 0.176354 0.069829

320.0 0.176354 0.069829

640.0 0.176354 0.069829
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Table 6. Numerical integration of (Ik) for different .j. (given - 20)

,,, = rmin/a (k 13) (k26) = (k35)

2.0 0.176139 0.069728

1.75 0.305726 0.105974

1.5 0.601154 0.195689

1.25 0.850189 0.281202

1.125 0.975302 0.327491

1.1 1.049792 0.355988



A 3-D Statistical Micromechanical Theory 89

111.8. Appendix I: Parameters for Eq. (22)

The parameters bi, ci and di in Eq. (22) can be shown to be:

b = [(1 + 2v)k + ,2k2

7r [1 922]

b2 = -a9, [(1 - 2v)k, + - cos20b

= 1  9-g2 ] (64)

b4 = (1 - 2v)k, + -k 3 sin 20
W L 92j

2
b5 = -- zg 2g 3k4 sin 4

* 2
b6 = -- zg 2g 3 k4 cos 4

Cl = f3 COS 4

C2 = f 4 cos 4 + fs cos 30 + f6 (cos 4 + cos 30)

c3 = f 4 sin 0 + fs sin 30 + f6(sin 30 + sin ) (65)

c4 = -2f6 cos4,

C5 = f7 + f8 Cos 20

c6 = f8 sin 2

d, = f3 sin 0

d2 = -f4 sin 4' + f5 sin 34' + f 6(sin 30 - sin 4')

d3 = f4 cos 4 -f5 cos 30 + f6 (cos 0 -COS3) (66)

d4 = -2f6 sin 0

d* = f8 sin 20

d6 = f1 - fscos2o
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where
9'11=-
95

f2=g9

gs
8

f3 = 8 [-2(1 + v)ag3f1 + zg2g3 k4]7r(2 -v)
8(1 -i)

A= - 8( )ag 3 f1
r8 

(67)
A= - 7r2-)zg3f2g4

f= 2
A 7r(2 - )zg2g3k4

f7 2 k,+ 12 zg, k2 )
2 

2fA = 7r(2 - v) g(af 2 + zg, k3)

g = (a 2 ) 
-

1/ 2

92 = (l - a 2 )1/2

11 
(68)

g3 =(12
a

95 = 0l - lP'2 1

k0= af2 - sin-'(g4)

k2 +a 2 (2a + 2z 2 -3p 2 )
3

g5

= a2 (4l - 5p 2 ) + l'
g3

95
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111.9. Figure captions

Figure 1. Coordinate systems for two microcracks.

Figure 2. Comparison of overall longitudinal normal compliance (S3).

Figure 3. Comparison of overall longitudinal shear compliance (S55).

Figure 4. Comparison of normalized longitudinal Young's modulus.

Figure 5. Comparison of normalized longitudinal shear modulus.
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